Abstract: Aluminum alloys grade 6061-T6 are characterized by their excellent properties and processing characteristics which make them ideal for varieties of industrial applications under cyclic loading, aluminum alloys show less fatigue life than steel alloys of similar strength. In the current study, a nanosecond fiber laser of maximum pulse energy up to 9.9 mJ was used to apply laser shock peening process (LSP) on aluminum thin sheets to introduce residual stresses in order to enhance fatigue life under cyclic loading Box-Behnken design (BBD) based on the design of experiments (DOE) was employed in this study for experimental design data analysis, model building and optimization The effect of working parameters spot size (ω), scanning speed (v) and pulse repetition rate (PRR) at three levels on the fatigue life expressed by the number of cycles (noc) were investigated The experimental results show an exclusive and significant percentage increase in the fatigue life of 505.25% and 477.81% when the ω= 0.04 mm and PRR= 22.5 kHz for two scanning speeds 200 mm/s and 500 mm/s respectively The optimized data extracted from the built model suggest a number of input parameters sets to enhance the performance of the process.
Smart thinking requires a continuous flexible systeroatic teaching in order that the lecturer can reach at easily, The Successful individuals in smart thin king are the most knowledgably with it, where the cognitive (intuitive- systematic) style has common bases with another cognitive styles in many traits, and these two concepts are the core of theorization of the rost important cognitive styles. The present study aims to measure the Smart thinking among university lecturers according to sex variable and recognize the statistically differences significance in the level of cognitive (intuitive- systematic) style among the university lecturers according to sex variable and recognize the correlation between smart thinki
... Show MoreOptimization of gas lift plays a substantial role in production and maximizing the net present value of the investment of oil field projects. However, the application of the optimization techniques in gas lift project is so complex because many decision variables, objective functions and constraints are involved in the gas lift optimization problem. In addition, many computational ways; traditional and modern, have been employed to optimize gas lift processes. This research aims to present the developing of the optimization techniques applied in the gas lift. Accordingly, the research classifies the applied optimization techniques, and it presents the limitations and the range of applications of each one to get an acceptable level of accura
... Show MoreOptimization of well placement plays a considerable role in the production and maximizing the net present value of the investment of oil field developments. However, the application of the optimization techniques in well placement developments is so complicated because many decision variables, objective functions, and constraints are involved in the well placement optimization case. Furthermore, many computational techniques; conventional and non-conventional, have been utilized to optimize well placement operations. This study displays the advancement of the optimization methods applied in the well placement. Subsequently, the study assorted the applied optimization methods, and it demonstrates the restriction and the range of implementati
... Show MoreThis study aims to model the flank wear prediction equation in metal cutting, depending on the workpiece material properties and almost cutting conditions. A new method of energy transferred solution between the cutting tool and workpiece was introduced through the flow stress of chip formation by using the Johnson-Cook model. To investigate this model, an orthogonal cutting test coupled with finite element analysis was carried out to solve this model and finding a wear coefficient of cutting 6061-T6 aluminum and the given carbide tool.
The electrochemical behavior of Al-17%Si alloy is investigated in 3.5wt% NaCl solution. Many alloys with addition of the different wt% magnesium metal of 1wt%, 2%, 3wt% ,4.5wt% ,and 9wt% were prepared by gravity die casting . The microstructures of prepared alloys were examined by optical and SEM microscopes. Corrosion behavior was investigated by using potentiostat instrument under static potentials test and corrosion current was recorded to determine corrosion resistance of all prepared samples. It was found that the addition of Mg metal improves the corrosion resistance of Al-17%Si alloy in 3.5%NaCl solution. The alloy containing 1%Mg shows less corrosion rate than the others while the alloys containing 4.5%Mg, 9%Mg content have
... Show MoreIn this paper, the effect of wear in the fluid film journal bearings on the dynamic stability of rotor bearing system has been studied depending on the development of new analytical equations for motion, instability threshold speed and steady state harmonic response for rotor with offset disc supported by worn journal bearings. Finite element method had been used for modeling the rotor bearing system. The analytical model is verified by comparing its results with that obtained numerically for a rotor supported on the short bearings. The analytical and numerical results showed good agreement with about 8.5% percentage error in the value of critical speed and about 3.5% percentage error in the value of harmonic response. T
... Show MoreProdigiosin is a ‘natural red pigment produced by Serratia marcescens which exhibits immunosuppressive and anticancer properties in addition to antimicrobial activities. This work presents an attempt to maximize the production of prodigiosin by two different strategies: one factor at time (OFAT) and statistical optimization. The result of OFAT revealed that sucrose and peptone were the best carbon and nitrogen sources for pigment production with concentration of prodigiosin of about 135 mg/ L. This value was increased to 331.6mg/ L with an optimized ratio of C/N (60:40) and reached 356.8 with pH 6 and 2% inoculum size at end of classical optimization. Statistical experimental design based on Response surface methodology was co
... Show MoreThe objective of this work is to study the influence of end milling cutting process parameters, tool material and geometry on multi-response outputs for 4032 Al-alloy. This can be done by proposing an approach that combines Taguchi method with grey relational analysis. Three cutting parameters have been selected (spindle speed, feed rate and cut depth) with three levels for each parameter. Three tools with different materials and geometry have been also used to design the experimental tests and runs based on matrix L9. The end milling process with several output characteristics is solved using a grey relational analysis. The results of analysis of variance (ANOVA) showed that the major influencing parameters on multi-objective response w
... Show MoreBacteria strain H8, which produces high amount of exopolysaccharide (EPS), was isolated from soil, and identified as strain of Azotobacter chrococcum by its biochemical /physiological characteristics, EPS was extracted, partially purified and used as bioflocculant. The biochemical analysis of the partially purified EPS revealed that it was an alginate. analysis of EPS by Fourier transform infrared spectrometry (FTIR) show that the -OH groups present in bioflocculant are clearly seen at 3433.06 cm-1, the peaks attributed to the -CH3 groups present at 2916.17 cm-1 , and some distinct peaks such as carboxyl group showed strong absorption bands at 1604.66 cm-1, 1411.80 cm-1 and 1303.79 cm-1 indicate the chemical structure of alginate. The effe
... Show More