Photonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity of the sensor has a significant dependence on the thickness of the coating and the sensor with the highest sensitivity showed a linear response for RH change in the range of 27-95% RH and a fast response time of 0.8 sec for an RH change from 50% to 90%.
Merging biometrics with cryptography has become more familiar and a great scientific field was born for researchers. Biometrics adds distinctive property to the security systems, due biometrics is unique and individual features for every person. In this study, a new method is presented for ciphering data based on fingerprint features. This research is done by addressing plaintext message based on positions of extracted minutiae from fingerprint into a generated random text file regardless the size of data. The proposed method can be explained in three scenarios. In the first scenario the message was used inside random text directly at positions of minutiae in the second scenario the message was encrypted with a choosen word before ciphering
... Show MoreVol. 6, Issue 1 (2025)
Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show MoreIn cyber security, the most crucial subject in information security is user authentication. Robust text-based password methods may offer a certain level of protection. Strong passwords are hard to remember, though, so people who use them frequently write them on paper or store them in file for computer .Numerous of computer systems, networks, and Internet-based environments have experimented with using graphical authentication techniques for user authentication in recent years. The two main characteristics of all graphical passwords are their security and usability. Regretfully, none of these methods could adequately address both of these factors concurrently. The ISO usability standards and associated characteristics for graphical
... Show MoreSecure information transmission over the internet is becoming an important requirement in data communication. These days, authenticity, secrecy, and confidentiality are the most important concerns in securing data communication. For that reason, information hiding methods are used, such as Cryptography, Steganography and Watermarking methods, to secure data transmission, where cryptography method is used to encrypt the information in an unreadable form. At the same time, steganography covers the information within images, audio or video. Finally, watermarking is used to protect information from intruders. This paper proposed a new cryptography method by using thre
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreA new algorithm is proposed to compress speech signals using wavelet transform and linear predictive coding. Signal compression based on the concept of selecting a small number of approximation coefficients after they are compressed by the wavelet decomposition (Haar and db4) at a suitable chosen level and ignored details coefficients, and then approximation coefficients are windowed by a rectangular window and fed to the linear predictor. Levinson Durbin algorithm is used to compute LP coefficients, reflection coefficients and predictor error. The compress files contain LP coefficients and previous sample. These files are very small in size compared to the size of the original signals. Compression ratio is calculated from the size of th
... Show More