Background: Urinary incontinence (UI) is a common disorder that affects women of various ages and impacts all aspects of life. This condition negatively influences quality of life. Fractional CO2 laser (10600nm) is the recent method for treatment of stress urinary incontinence in women. Objectives: The purpose of the study was to evaluate the efficacy and safety of fractional CO2 laser (10600nm) in the treatment of female stress urinary incontinence. Materials & Methods: This study was done from July 2020 to February 2021conducted at the laser institute for postgraduate studies university of Baghdad, patients collected from a private clinic and the Department of Obstetrics and Gynecology of Al-Kadhimiya private hospital, Baghdad, Iraq. Twenty women clinically diagnosed with SUI preferring non-surgical treatment were recruited to the study, their mean ages 43.6 + 13.9 years. Response to treatment was assessed at baseline and at one month follow up after the third session using a pelvic Floor Questionnaire (PFQ-UI).The laser parameters used were CO2 laser wavelength 10600 nm, power 35 watt, duration 1.0 ms, distance 1.0 mm, scan mode normal, scan times 4 and scan Rows 4,Interval 0.5s. Results: Most of the twenty women included in the study 80 % reported satisfaction and 20% not satisfied with treatment after 3 sessions of CO2 laser four weeks apart. Conclusion: Fractional CO2 laser treatment is an easy to use, minimally invasive and effective option for treatment of SUI.
The goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with different thi
... Show MoreThe effect of Low-Level Laser (LLL) provided by green semiconductor laser with an emission wavelength of 532 nm on of human blood of people with brain and prostate cancer has been investigated. The effect of LLL on white blood cell (WBC), NEUT, LYMPH and MONO have been considered. Platelet count (PLT) has also been considered in this work. 2 ml of blood sample were irradiating by a green laser of the dose of 4.8 J/cm2. The results suggest a potential effect of LLL on WBC, PLT, NEUT, LYMPH, and MONO of people with brain and prostate cancer Key words: white blood cell , platelet , low-level laser therapy
HR Al-Hamamy, KE Sharquie, AA Noaimi, WN Hussein, Our Dermatology Online, 2014 - Cited by 6
KE Sharquie, AA Noaimi, SA Galib, Journal of Cosmetics, Dermatological Sciences and Applications, 2013 - Cited by 4
New metal ions complexes of tridentate ligand (1-((dicyclohexylamino) methyl)-3-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrzol-4-ylimino) indolin-2-one) have been synthesized and characterized by chemical-physical analysis. The ligand acts as a tridentate for the complexation reaction with all metal ions. The new complexes, possessing the general formula [M(L)Cl]Cl where M=[Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Hg(II) ] ,show tetrahedral geometry. All complexes ,except Pd(II) complex which has a square planar geometry and Pt(IV) which show an octahedral geometry. The geometry of the prepared compounds has been proposed in another method theoretically by using one of the calculation molecular programs (Hype
... Show MoreThe study aimed to establish the association of miR-153-3p expression with treatment response to IM in CML patients. Sixty CML patients were included and divided into two groups consistent with their response to treatment whether sensitive or resistant to IM. Ten healthy normal participants were enrolled as control group. RNA was extracted from serum to work out miR-153-3p expression utilizing real-time quantitative reverse transcription polymerase chain reaction. The primers were supplied by Macrogen Inc. Twenty seven patients were sensitive to imatinib and 33 were resistant to imatinib. The ratio of male to female was 1.14:1. The bulk (58%) of patients were within the age range of 41-60 years. Weight and gender did not significantly diffe
... Show More