Anal fistula is an anorectal condition with over 90% of cases being
cryptoglandular in origin and occurring after anorectal abscesses. The traditional method of
treatment of an anal fistula is by excision or de roofing the tract awaiting complete healing.. Aim:
The aim of this study is to assess the efficacy of diode laser 980 nm in the treatment of low fistula in
ano. Methods: The study was performed between June 2019 to end of September 2019, at the
institute of laser for postgraduate study in Baghdad university. A cohort of ten male patients with a
provisional diagnosis of low type anal fistula were selected for this study and treated by interstitial
photothermal therapy of fistula epithelium by diode laser 980nm . They were ageing from 21-45
years. Results: The mean operative time was 18.9 minutes (range of 12-25) minutes. All patients
discharged after procedure to their home. No pain is presented by seven patients. Only three
patients reported a mild pain and occasional need for a pain killer. No patient complained of
incontinence anytime during postoperative period. The mean time for closure of the fistulae was
12.7 days(range of 7-18 days). Conclusions: The procedure described in this work indicate that it
may be possible to affect healing of a low anal fistula tract by mere photocoagulation of the tract
without excision or deroofing.
Organic light emitting diodes (OLEDs) were fabricated containing host molecule of conjugated polymer MEH-PPV poly (2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenlenevinylene) which was dissolved in chloroform solvent and doped with guest molecules MWCNTs that were dissolved in DMF solvent with different volume ratios 0.05 and 0.15, nanocomposite system which acts as active layer in OLEDs device. The Poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) "PEDOT:PSS" and Tris98-hydroxyquinoline) aluminum "Alq3" as hole transport layer HTL and electron transport layer ETL were used respectively, to enhanced the injection charge from the electrodes to the active layer. Spin coating method used for achieving facile and low cost OLED. The absorption s
... Show MoreThis work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
We observed strong nonlinear absorption in the CdS nanoparticles of dimension in the range 50-100 nm when irradiant with femtosecond pulsed laser at 800 nm and 120 GW/cm 2 irradiance intensity. The repetition rate and average power were 250 kHz and
Ceramic coating compose from a ceramic mixture (MgO, Al2O3) and metall (Al-Ni) were produced by Thermal Spray Technique. The mixed ratio of used materials Al:Ni (50%) and 40% of Al2O3 and 10% MgO. This mixture was spray on a stainless steel substrate of type (316 L) by using thermal spray with flame method and at spraying distances (8, 12, 16 and 20) cm, then the prepared films were treated by laser and thermal treatment. After that performing a hardness and adhesion tests were eximined. The present study shows that the best value of the thermal treatment is 1000 ℃ for 30 mint; the optimum spray distance is 12 cm and most suitable laser is 500 mJ where the microscopic and mechanical character
... Show MoreThe present work aims to study the treatment of oily wastewater by means of forward osmosis membrane bioreactor process. Side stream (external) configuration and submerged (internal) configuration of osmotic membrane bioreactor were performed and investigated. The experimental work for each configuration was carried out continuously over 21 days. The flux behavior of forward osmosis membrane in an osmotic membrane bioreactor (OMBR) was investigated, using NaCl as the draw solution and CTA as FO membrane. The effect of mixed liquor suspended solids (MLSS) concentration and TDS accumulation of bioreactor on water flux and membrane fouling behaviors was detected. The accumulation and rejection of nutrients in the bioreactor (Nitrate, COD,
... Show MorePorous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
Two types of adsorbents were used to treat oily wastewater, activated carbon and zeolite. The removal efficiencies of these materials were compared to each other. The results showed that activated carbon performed some better properties in removal of oil. The experimental methods which were employed in this investigation included batch and column studies. The former was used to evaluate the rate and equilibrium of carbon and zeolie adsorption, while the latter was used to determine treatment efficiencies and performance characteristics. Expanded bed adsorber was constructed in the column studies. In this study, the adsorption behavior of vegetable oil (corn oil) onto activated carbon and zeolite was examined as a function of the concentr
... Show MoreThe electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples
... Show MoreA study was performed to evaluate heavy metals removal from sewage sludge using lime. The processes of stabilization using alkaline chemicals operating on a simple principle of raising pH to 12 or higher, with sufficient mixing and suitable contact time to ensure that immobilization can reduce heavy metals. A 0.157 m3 tank was designed to treat Al-Rustemeyia wastewater treatment plant sludge. Characteristics of raw sludge were examined through two parameters: pH and heavy metal analysis. Different lime doses of (0- 25) g CaO/100 g sludge were mixed manually with raw sludge in a rotating drum. The samples were analyzed two hours after mixing. pH and heavy metals results were compared with EPA and National Iraqi Stand
... Show MoreThe aim of the present research is to investigate the effecting of pH parameter on the feasibility of lead removal from simulated wastewater using an electrochemical system. Electrocoagulation method is one of electrochemical technology which is used widely to treat industrial wastewater. Parameters affecting this operation, such as initial metal concentration, applied current, stirrer speed, and contact time of electroprocessing were taken as 155ppm, 1.5 Ampere, 150 rpm, 60 minutes respectively. While pH of the simulated wastewater was in the range of 2 to 12 in the experiments. It was found from the results that pH is an important parameter affecting lead removal operation. The best value of pH parameter is appro
... Show More