Background: Acne is a common disorder experienced by adolescents and persists into adulthood in approximately 12%–14% of cases with psychological and social implications of high gravity. Fractional resurfacing employs a unique mechanism of action that repairs a fraction of skin at a time. The untreated healthy skin remains intact and actually aids the repair process, promoting rapid healing with only a day or two of downtime. Aims: This study, was designed to evaluate the safety and effectiveness of fractional photothermolysis (fractionated Er: YAG laser 2940nm) in treating atrophic acne scars. Methods: 7 females and 3 males with moderate to severe atrophic acne scarring were enrolled in this study that attained private clinic for Dermatology and Laser in Baqubah city of Diyala - Iraq during the period from 1st of June 2019 to 10th of October 2019. Fractional Er:YAG laser 2940 nm wavelength was delivered to the whole face with a single pass treatment and for the acne scar areas with two passes. Therapeutic outcomes were assessed by standardized digital photography. Results: Three patients (30%) reported excellent improvement, five patients (50%) significant improvement, one patient (10%) moderate improvement, and one patient (10%) mild improvement in the appearance of the acne scars. Conclusion: Fractional Er: YAG a safe and effective option for the treatment of acne scars in Iraqi patients by offering faster recovery time with no or mild side effects in comparison to other traditional modalities.
We have studied the effect of applying an external magnetic field on the characteristics of iron oxide (IO) nanoparticles (NPs) synthesized by pulsed laser ablation in dimethylformamide (DMF). The NPs synthesized with and without applying of magnetic field were characterized by Fourier transformation infrared spectroscopy (FT-IR), UV–Vis absorption, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). SEM results confirmed that the particle size was decreased after applying magnetic field.
Incident laser power and concentration effects on fluorescence emission from DCM dye in PMMA polymer have been investigated. Different concentrations of the dye were used. It was found that the fluorescence intensity increased with increasing of the concentration of the dye, with a red shift. In addition, it was found that the fluorescence intensity increased with the increase of the incident laser power I0.
Background: Corticotomy-assisted orthodontic treatment is done to induce a state of increased tissue turnover and transient osteopenia, which is followed by a faster rate of orthodontic tooth movement. It considered as an adjunct treatment option for orthodontic treatment of adults. The aim of this Study was to elucidate the effectiveness of a new surgical approach for acceleration of maxillary canine retraction in human with laser assisted flapless corticotomy and evaluate its effect on vitality of pulp and gingival sulcus depth. Materials and methods: the sample comprised of 15 Iraqi patients (9 females and 6 males; mean age 21.7), who were required extraction for their maxillary first premolars followed by retraction of the canines as pa
... Show MoreIn this research, beam expander, BEX, is explained and designed for illuminating the
remote flying target. The BEX is optically designed to be suited for Nd:YAG laser of given
specifications. The BEX is modified to be zoom one to meet the conditions of preventing the
receiving unit; i.e the photodetector, from getting saturated at near and far laser tracking.
Decollimation could be achieved by automatic motor, which controls zoom lens of the BEX
according to the required expansion ratio of beam expander
In this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.
Objective: The present study investigates whether the exposure to low-power diode laser induces denaturation in red blood cell (RBC) membrane protein composition, and determines the irradiation time for when denaturation of membrane protein process begins. Background: A low-energy laser has been used extensively in medical applications. Several studies indicated significant positive effects of laser therapy on biological systems. In contrast, other studies reported that laser induced unwanted changes in cell structure and biological systems. The present work studied the effect of irradiation time of low-power diode laser on the structure of membrane proteins of human RBCs. Materials and methods: The RBC suspension was divided into five equa
... Show MoreIn this study, silver-tungsten oxide core–shell nanoparticles (Ag–WO3 NPs) were synthesized by pulsed laser ablation in liquid employing a (1.06 µm) Q-switched Nd:YAG laser, at different Ag colloidal concentration environment (different core concentration). The produced Ag–WO3 core–shell NPs were subjected to characterization using UV–visible spectrophotometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy, electrical analysis, and photoluminescence PL. The UV–visible spectra exhibited distinct absorption peaks at around 200 and 405 nm, which attributed to the occurrence of surface Plasmon reson
Autorías: Wafaa Sabah Mohammed Al-Khafaji, Fatimah Hameed Kzar Al-Masoodi, Suadad Ibrahim Suhail Al-Kinani. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 3, 2023. Artículo de Revista en Dialnet.