Preferred Language
Articles
/
ijl-208
Stress Urinary Incontinence Treatment Using Vaginal Fractional CO2 Laser (10600nm)
...Show More Authors

Stress urinary incontinence (SUI) is involuntary urine leakage during activities that increase abdominal pressure such as coughing, sneezing and lifting of heavy weights. This is a very common disorder among women with history of multiple vaginal deliveries with an obstructed labor. SUI is considered one of the most distressing problems, especially for younger women, with severe quality of life implications, it caused by the loss of urethral support, usually as a consequence of the supporting structural muscles in the pelvis.

Objective: To prove and demonstrate the effect of a fractional CO2 micro-ablative laser (10600nm) in intra vaginal therapy for treating SUI and achieve a clinical improvement of the urogenital system support.

Methods: This is a prospective, observational study which was conducted over six month from the 1st . of July to 29th of December 2016 in Consultation Gynecologist Clinic in Al-Hila city, Iraq, in patients who complain of SUI. Twenty female patients were included in the study, their age ranged from 30- 69 year, at range (49.5 year ) fifteen patient delivered vaginally, two delivered by cesarean section, two had combined delivery and one was Nulliparous ,all of them received the same treatment protocol. Detailed history about continence assessment, quality of life and sexuality before and after therapy. The fractional CO2 Aphrodite laser was used. The parameters used in each session were energy/(dot)pixel 119.4mJ, pulse duration 900 μs, frequancy1000Hz, and exposure time 300ms /shot with average of shots 34 and in range 26-42, in three sessions four weeks apart between them. The patients were followed for three months started from the beginning of the second session to one month after the last session.

 Results: Thirty-five percent of patients 35%(n=7) were cured ,and these 35% included all patients delivered by cesarean section and one third of patients who delivered vaginally and extensively most of patients were 60%(n=12) improved of their SUI. Patient reported no leakage any more while coughing or sneezing. Only 5%(n=1) not responded was menopause women.

Conclusions: This study shows that micro-ablative fractional CO2 laser is effective can produce a remodeling of vaginal connective tissue without causing damage to surrounding tissue and the group of patients with continence disorder without vaginal delivery achieved marked improvement .

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 15 2010
Journal Name
Iraqi Journal Of Laser
Photo Response of Locally Isolated Methicillin-Resistant Staphylococcus aureus to Q-switched Nd:YAG Laser In Vitro Study
...Show More Authors

This prospective study investigates the prevalence of methicillin-resistant S.aureus (MRSA)
in burn unit of Al-Kindy Iraqi hospital, their susceptibility to antibiotics and bactericidal effect of near
infrared light from high powered 1064nm Nd: YAG laser and green light 532nm from SHG Nd: YAG laser
using various energy densities on these bacteria. Twenty four clinical isolates of S.aureus out of sixty
four examined patients with sever burn ulcers.MRSA was associated with 50% of S.aureus infections
.Results of antimicrobial susceptibility revealed that MRSA were multidrug resistant. After laser treatment
of non MRSA with Nd:YAG with wavelength of 1.064nm, 4mm beam diameter, energy density of
0.636 kh/cm2 and 180sec ex

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Iraqi Journal Of Physics
Thickness and gamma-ray effect on physical properties of CdO thin films grown by pulsed laser deposition
...Show More Authors

Polycrystalline Cadmium Oxide (CdO) thin films were prepared
using pulsed laser deposition onto glass substrates at room
temperature with different thicknesses of (300, 350 and 400)nm,
these films were irradiated with cesium-137(Cs-137) radiation. The
thickness and irradiation effects on structural and optical properties
were studied. It is observed by XRD results that films are
polycrystalline before and after irradiation, with cubic structure and
show preferential growth along (111) and (200) directions. The
crystallite sizes increases with increasing of thickness, and decreases
with gamma radiation, which are found to be within the range
(23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Nov 27 2023
Journal Name
Korean Journal Of Orthodontics
Effectiveness of laser-engineered copper-nickel titanium versus superelastic nickel-titanium aligning archwires: A randomized clinical trial
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Mar 30 2023
Journal Name
Optics Continuum
Ultrafast lithium disilicate veneer debonding time assisted by a CO<sub>2</sub> laser with temperature control
...Show More Authors

We report on using a CO2 (10.6 µm) laser to debond the lithium disilicate veneers. Sixty-four sound human premolar teeth and 64 veneer specimens were used in the study. The zigzag movement via CO2 laser handpiece along with an air-cooled jet to prevent temperature elevation above the necrosis temperature limit (5.5 C°) was applied. The optimal deboning irradiation time was super-fast, at about 5 seconds at 3 Watt CO2 laser power. It is 20 times less than any previously published work for veneers debonding. The enamel beneath the debonded veneers has been assessed by atomic force microscopy (AFM) and shear stress technique as criteria for the easiness of debonding. The

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Simulation and Analysis the Attenuation Effect of Atmospheric Layers on a Laser Beam Within the Visible Range
...Show More Authors

Abstract: The power and the size of the final spot of the laser beam reaching the target are very important requirements in most of the laser applications and fields such as medical, military, and scientific, so studying laser propagation in the atmosphere is a very important topic. The propagation of the laser beam through the atmosphere is subject to several attenuation processes that deplete the power and expand the beam. Through the simulation results of the free electron laser within the visible region of the electromagnetic spectrum (400-700nm), it was found that the attenuation increases with decreasing wavelength. Laser propagation in the presence of rain and snow leads to a very large l

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Feb 03 2022
Journal Name
Open Access Macedonian Journal Of Medical Sciences
Femtosecond Small Incision Lenticular Extraction in comparison to Femtosecond Laser In situ Keratomileusis Regarding Dry Eye Disease
...Show More Authors

 Abstract Objective: Comparison of femtosecond small incision lenticule extraction (FS-SMILE) versus Femtosecond laser Insitu keratomileusis (FS-LASIK) regarding dry eye disease (DED) and corneal sensitivity (CS) after those refractive surgeries. Methods: A comparative prospective study conducted for a period of 2 years; from March 2017 until February, 2019. Enrolled patients were diagnosed with myopia. Fifty patients (100 eyes) were scheduled for bilateral FS-SMILE and the other 50 patients (100 eyes) had been scheduled for bilateral FS-LASIK. Both groups were followed for six months after surgery. The age, gender, and preoperative refraction for both groups were matched. Complete evaluation of dry eye disease had been

... Show More
Crossref
Publication Date
Sun Oct 15 2023
Journal Name
Bionatura
Study the effect of the different doses from the laser on Staphylococcus aureus Bacteria growth in vitro
...Show More Authors

Background: Laser is a novel physical therapy technique used to treat various conditions, including wound healing, inhibition of bacterial growth, and postoperative wounds. High-power pulsed alexandrite laser therapy is one of the most prevalent forms of laser therapy, which is a noninvasive method for treating various pathological conditions, thereby enhancing functional capacities and quality of life. It is a modern medical and physiotherapeutic technology. Generally, the Alexandrite laser emits infrared light with a wavelength of 755 nm, allowing it to propagate and penetrate tissues. Objective: This study focused on the application of a high-power pulsed alexandrite laser in vitro to evaluate the effect of a pulsed alexandrite l

... Show More
View Publication
Crossref (1)
Scopus Crossref
Publication Date
Fri Dec 15 2023
Journal Name
Iraqi Journal Of Laser
The Reliability of Two Different Laser Wavelengths in Inducing Bone Healing Around Dental Implants: Comparative Clinical Trial
...Show More Authors

Background/purpose: Dental implantology involves different treatments that have been used in conjunction with dental implant surgery to increase implant stability and bone regeneration process. Photobiomodulation( PBM) can be one of these techniques. The objective of this study was to evaluate the bone density around implants. Materials and methods: in this study, 10 individuals had 20 implants inserted in the posterior of their mandibles. each patient received two implants the left side served as the control whereas the right side served as the study group with a diode laser (same patients). measurements were made for each implant. Measurements were obtained using cone-

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 10 2024
Journal Name
Journal Of Optics
Pulsed laser deposition of Pd/WO3 nanoparticles on Si nanostructure for highly sensitive room-temperature gas sensors
...Show More Authors

View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
The Structure and Optical Properties of Ag doped CdO Thin Film Prepared by Pulse Laser Deposition (PLD)
...Show More Authors

At a temperature of 300 K, a prepared thin film of Ag doped with different ratios of CdO (0.1, 0.3, 0.5) % were observed using pulse laser deposition (PLD). The laser, an Nd:YAG in ?=1064 nm, used a pulse, constant energy of 600 mJ ,with a repetition rate of 6 Hz and 400 pulses. The effect of CdO on the structural and optical properties of these films was studied. The structural tests showed that these films are of a polycrystalline structure with a preferred orientation in the (002) direction for Ag. The grain size is positively correlated with the concentration of CdO. The optical properties of the Ag :CdO thin film we observed included transmittance, absorption coefficient, and the energy gap in the wavelength range of 300-1100

... Show More
View Publication Preview PDF
Crossref (3)
Scopus Clarivate Crossref