This research aims to design a high-speed laser diode driver and photodetector, the result is the
design of the high-speed laser diode driver with a short pulse of 10 ns at 30 KHz frequency and the
delivered maximum pulse voltage is 5.5 mV. Also, its optical output power of the laser diode driver is
about 2.529 mW for the centroied wavelength 1546.7 nm with FWHM of 286 pm and (1270-1610) nm.
The design of the circuit based on bipolar transistor where the input pulse signal is simply generated by
an arduino kit with 15 kHz frequency and then compensated to trigger to small signal amplifier which
was is simply NPN C3355 transistor and the output is a current driver to the laser diode. OptiSystem
software and Electronic Workbench tools were used for the design of high speed laser diode diver and its
simulation
In the present paper, Arabic Character Recognition Edge detection method based on contour and connected components is proposed. First stage contour extraction feature is introduced to tackle the Arabic characters edge detection problem, where the aim is to extract the edge information presented in the Arabic characters, since it is crucial to understand the character content. The second stage connected components appling for the same characters to find edge detection. The proposed approach exploits a number of connected components, which move on the character by character intensity values, to establish matrix, which represents the edge information at each pixel location .
... Show MoreFinancial fraud remains an ever-increasing problem in the financial industry with numerous consequences. The detection of fraudulent online transactions via credit cards has always been done using data mining (DM) techniques. However, fraud detection on credit card transactions (CCTs), which on its own, is a DM problem, has become a serious challenge because of two major reasons, (i) the frequent changes in the pattern of normal and fraudulent online activities, and (ii) the skewed nature of credit card fraud datasets. The detection of fraudulent CCTs mainly depends on the data sampling approach. This paper proposes a combined SVM- MPSO-MMPSO technique for credit card fraud detection. The dataset of CCTs which co
... Show MoreTested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin
Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreNowad ays, with the development of internet communication that provides many facilities to the user leads in turn to growing unauthorized access. As a result, intrusion detection system (IDS) becomes necessary to provide a high level of security for huge amount of information transferred in the network to protect them from threats. One of the main challenges for IDS is the high dimensionality of the feature space and how the relevant features to distinguish the normal network traffic from attack network are selected. In this paper, multi-objective evolutionary algorithm with decomposition (MOEA/D) and MOEA/D with the injection of a proposed local search operator are adopted to solve the Multi-objective optimization (MOO) followed by Naï
... Show MoreDropping packets with a linear function between two configured queue thresholds in Random Early Detection (RED) model is incapable of yielding satisfactory network performance. In this article, a new enhanced and effective active queue management algorithm, termed Double Function RED (DFRED in short) is developed to further curtail network delay. Specifically, DFRED algorithm amends the packet dropping probability approach of RED by dividing it into two sub-segments. The first and second partitions utilizes and implements a quadratic and linear increase respectively in the packet dropping probability computation to distinguish between two traffic loads: low and high. The ns-3 simulation performance evaluations clearly indicate t
... Show MoreThe density functional B3LYP is used to investigate the effect of decorating the silver (Ag) atom on the sensing capability of an AlN nanotube (AlN-NT) in detecting thiophosgene (TP). There is a weak interaction between the pristine AlN-NT and TP with the sensing response (SR) of approximately 9.4. Decoration of the Ag atom into the structure of AlN-NT causes the adsorption energy of TP to decrease from − 6.2 to − 22.5 kcal/mol. Also, the corresponding SR increases significantly to 100.5. Moreover, the recovery time when TP is desorbed from the surface of the Ag-decorated AlN-NT (Ag@AlN-NT) is short, i.e., 24.9 s. The results show that Ag@AlN-NT can selectively detect TP among other gases, such as N2, O2, CO2, CO, and H2O.
Geotechnical engineering like any other engineering field has to develop and cope with new technologies. This article intends to investigate the spatial relationships between soil’s liquid limit (LL), plasticity index (PI) and Liquidity index (LI) for particular zones of Sulaymaniyah City. The main objective is to study the ability to produce digital soil maps for the study area and determine regions of high expansive soil. Inverse Distance Weighting (IDW) interpolation tool within the GIS (Geographic Information System) program was used to produce the maps. Data from 592 boreholes for LL and PI and 245 boreholes for LI were used for this study. Layers were allocated into three depth ranges (1 to 2, 2 to 4 and 4 to 6)
... Show MoreThe novel coronavirus 2019 (COVID-19) is a respiratory syndrome with similar traits to common pneumonia. This major pandemic has affected nations both socially and economically, disturbing everyday life and urging the scientific community to develop solutions for the diagnosis and prevention of COVID-19. Reverse transcriptase-polymerase chain reaction (RT–PCR) is the conventional approach used for detecting COVID-19. Nevertheless, the initial stage of the infection is less predictable in PCR tests, making early prediction challenging. A robust and alternative diagnostic method based on digital computerised technologies to support conventional methods would greatly help society. Therefore, this paper reviews recent research bas
... Show MoreFace detection is one of the important applications of biometric technology and image processing. Convolutional neural networks (CNN) have been successfully used with great results in the areas of image processing as well as pattern recognition. In the recent years, deep learning techniques specifically CNN techniques have achieved marvellous accuracy rates on face detection field. Therefore, this study provides a comprehensive analysis of face detection research and applications that use various CNN methods and algorithms. This paper presents ten of the most recent studies and illustrate the achieved performance of each method.