In this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed that these isolates are biological surfactant producers. The bet
... Show MoreThe aim of this paper is to translate the basic properties of the classical complete normed algebra to the complete fuzzy normed algebra at this end a proof of multiplication fuzzy continuous is given. Also a proof of every fuzzy normed algebra without identity can be embedded into fuzzy normed algebra with identity and is an ideal in is given. Moreover the proof of the resolvent set of a non zero element in complete fuzzy normed space is equal to the set of complex numbers is given. Finally basic properties of the resolvent space of a complete fuzzy normed algebra is given.
In this research for each positive integer integer and is accompanied by connecting that number with the number of Bashz Attabq result any two functions midwives to derive a positive integer so that there is a point
The aim of this paper is to introduce the notion of hyper fuzzy AT-ideals on hyper AT-algebra. Also, hyper fuzzy AT-subalgebras and fuzzy hyper AT-ideal of hyper AT-algebras are studied. We study on the fuzzy theory of hyper AT-subalgebras and hyper AT-ideal of hyper AT-algebras. Furthermore, the fuzzy set theory of the (weak, strong, s-weak) hyper fuzzy ATideals in hyper AT-algebras are applied and the relations among them are obtained.
The aim of this paper is to introduce and study the notion type of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j = {δ, θ, α, p, s, b, β}.
In the present paper, discuss the concept of fuzzy topological spectrum of a bounded commutative KU-algebra and study some of the characteristics of this topology. Also, we show that the fuzzy topological spectrum of this structure is compact and T1 -space.
We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T-ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied. Abstract We introduce the notion of interval value fuzzy ideal of TM-algebra as a generalization of a fuzzy ideal of TM-algebra and investigate some basic properties. Interval value fuzzy ideals and T- ideals are defined and several examples are presented. The relation between interval value fuzzy ideal and fuzzy T-ideal is studied.
This paper introduces a relation between resultant and the Jacobian determinant
by generalizing Sakkalis theorem from two polynomials in two variables to the case of (n) polynomials in (n) variables. This leads us to study the results of the type: , and use this relation to attack the Jacobian problem. The last section shows our contribution to proving the conjecture.