The purpose of this study is to demonstrate a simple high sensitivity vapor sensor for propanol ((CH3)2CHOH). A free space gap was employed in two arms of a Mach-Zehnder interferometer to serve as the sensing mechanism by adding propanol volume (0.2, 0.4, 0.6, 0.8, and 1) ml and to set the phase reference with a physical spacing of (0.5, 1, 1.5, and 2) mm. The propagation constant of transmitted light in the Mach-Zehnder interferometer’s gap changes due to the small variation in the refractive index inside sensing arm that will further shift the optical phase of the signal. Experimental results indicated that the highest sensitivity of propanol was about 0.0275 nm/ml in different liquid volume while highest phase shift was 0.182×103 in liquid volume 0.2 ml for spacing 1 mm.
In Iraq most of the small buildings deployed a conventional air conditioning technology which typically uses electrically driven compressor systems which exhibits several clear disadvantages such as high energy consumption, high electricity at peak loads. In this work a thermal performance of air conditioning system combined with a solar collector is investigated theoretically. The hybrid air conditioner consists of a semi hermetic compressor, water cooled shell and tube condenser, thermal expansion valve and coil with tank evaporator. The theoretical analysis included a simulation for the solar assisted air-conditioning system using EES software to analyze the effect of different parameters on the power consumption of c
... Show MoreAbstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show MoreThis assay rapidly detects chlorpromazine hydrochloride using its ability to reduce gold ions to form nanoparticles. Its low cost, resilience to interferences and short analysis time could facilitate environmental monitoring and biomedical analysis.
This assay rapidly detects chlorpromazine hydrochloride using its ability to reduce gold ions to form nanoparticles. Its low cost, resilience to interferences and short analysis time could facilitate environmental monitoring and biomedical analysis.
Background: Suppression of quorum sensing (QS) that regulates many virulence factors, including antimicrobial resistance, in bacteria may subject the pathogenic microbes to the harmful consequences of the antibiotics, increasing their susceptibility to such drugs. Aim: The current study aimed to make an aqueous crude extract from the soil Proteus mirabilis isolate with the use of the gas chromatography-mass spectrometry (GC-MS) technique for its analysis, and then, study the impact of the extract on clinical isolates of Pseudomonas aeruginosa. Methods: Preparation of crude extracts from P. mirabilis (both organic and aqueous), which were then analyzed by GC-MS to detect the bioactive ingredients. Furthermore, the extract’s capability to i
... Show MoreThis study introduces a highly sensitive trapezium-shaped PCF based on an SPR refractometric sensor with unique design features. The structure of a sensor was designed and analyzed using COMSOL Multiphysics v5.6 based on Finite Element Method (FEM) with a focus on investigating the influence of various geometric parameters on its performance. The two channels were coated with a metallic gold layer to provide chemical stability, and a thin layer of TiO₂ improved the gold's adhesion to the fiber. The findings indicate that the proposed sensor achieves maximum amplitude and wavelength sensitivities of 1,779 RIU⁻¹ and 30,500 nm/RIU, respectively, with corresponding resolutions of 3.2
Reliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co