This work presents the use of laser diode in the fiber distributed data interface FDDI networks. FDDI uses optical fiber as a transmission media. This solves the problems resulted from the EMI, and noise. In addition it increases the security of transmission. A network with a ring topology consists of three computers was designed and implemented. The timed token protocol was used to achieve and control the process of communication over the ring. Nonreturn to zero inversion (NRZI) modulation was carried out as a part of the physical (PHY) sublayer. The optical system consists of a laser diode with wavelength of 820 nm and 2.5 mW maximum output power as a source, optical fiber as a channel, and positive intrinsic negative (PIN) photodiode with maximum responsivity at wavelength of 820 nm as a detector. Practical tests were carried out on the laser diode showed that the output characteristics and spectral characteristics of the laser diode depend largely on the drive current. The maximum separation distance between successive stations in the ring was 5.4 km. From the performance tests, it was concluded that the maximum throughput and maximum access delay are directly proportional to length of the transmitted information. A trade off between the transmitted information length and the maximum access delay is needed.
This paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to
... Show MoreThis study focuses on the impact of technology on creating a dystopian world as presented by the English playwright Caryl Churchill in her play A Number (2002). This dramatic work came as a reaction to the most crucial and valuable turning point in the scientific achievements of human engineering, namely, the cloning of the sheep called Dolly. Therefore, A Number is a play that presents an analytical stage for imagining the biotechnological and scientific future. This dramatic vignette captures the playwright’s fears towards the abnormal progress of technology and science and how far such technological progress affects human relationships and identity. It also portrays how technological progress results in the feeling of a lack of
... Show MoreIraq suffers from serious pollution with harmful particles that have important direct and indirect effects on human activities and human health. In this research, a system for detecting pollutants in the air was designed and manufactured using infrared laser technology. This system was used to detect the presence of pollutants in the dust storms that swept the city of Baghdad which could have a negative impact on human health and living organisms.
The designed detection system based on the use of infrared laser (IR) with a wavelength of 1064 nm was used for the purposes of detecting pollutants based on the scattering of the laser beam from these pollutants. The system was aligned to obtain the best signal for the scattered rays, w
... Show MoreA theoretical calculation of the reorganization energies is demonstrated for semiconductor (TiOâ‚‚, ZnO) and organic dye (safranine T, and coumarin) with a variety solvent such that (water, 1Âpropanol, Formamide, Acetonitrile and Ethanol). The reorganization energy values for dye –semiconductor interface system are large in high polar solvent (water 741 .0 ï¬ , Acetonitrile 708 .0 ï¬ , Ethanol 669 .0 ï¬ ) and small in low polar solvent(1Âpropanol 635 .0 ï¬ . The reorganization energy in safranine T –semiconductor system is larger ( 635 741.0 ï€ )than in coumarin –semiconductor for with the same solvents ( 612
... Show MoreThe deployment of UAVs is one of the key challenges in UAV-based communications while using UAVs for IoT applications. In this article, a new scheme for energy efficient data collection with a deadline time for the Internet of things (IoT) using the Unmanned Aerial Vehicles (UAV) is presented. We provided a new data collection method, which was set to collect IoT node data by providing an efficient deployment and mobility of multiple UAV, used to collect data from ground internet of things devices in a given deadline time. In the proposed method, data collection was done with minimum energy consumption of IoTs as well as UAVs. In order to find an optimal solution to this problem, we will first provide a mixed integer linear programming m
... Show MoreIn this work the effect of choosing tri-circular tube section had been addressed to minimize the end effector’s error, a comparison had been made between the tri-tube section and the traditional square cross section for a robot arm, the study shows that for the same weight of square section and tri-tube section the error may be reduced by about 33%.
A program had been built up by the use of MathCAD software to calculate the minimum weight of a square section robot arm that could with stand a given pay load and gives a minimum deflection. The second part of the program makes an optimization process for the dimension of the cross section and gives the dimensions of the tri-circular tube cross section that have the same weight of
... Show MoreThis paper proposes improving the structure of the neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two learning algorithms are used to adjust the parameters weight of the hybrid neural structure with its serial-parallel configuration; the first one is supervised learning algorithm based Back Propagation Algorithm (BPA) and the second one is an intelligent algorithm n
... Show More