This study investigates the surgical and thermal effects on oral soft tissues produced by CO2 laser emitting at 10.6 micrometers with three different fluences 490.79, 1226.99 and 1840.4 J/cm2. These effects are specifically; incision depth, incision width and the tissue damage width and depth. The results showed that increasing the fluence and /or the number of beam passes increase the average depths of ablation. Moreover, increasing the fluence and the number of beam passes increase the adjacent tissue damage in width and depth. Surgeons using CO2 laser should avoid multiple pulses of the laser beam over the same area, to avoid unintentional tissue damage.
In this work we investigate and calculate theoretically the variation in a number of optoelectronic properties of AlGaAs/GaAs quantum wire laser, with emphasis on the effect of wire radius on the confinement factor, density of states and gain factor have been calculated. It is found that there exist a critical wire radius (rc) under which the confinement of carriers are very weak. Whereas, above rc the confinement factor and hence the gain increase with increasing the wire radius.
The present study includes a theoretical treatment to derive the general equations of pumping threshold power ( ), laser output power (Pout), and laser device efficiency (ƞ) of the element-doped thin-disk laser (Yb3+) with a quasi-three-level pumping scheme in the continuous wave mode at a temperature of (299K°). In this study, the host crystals (YAG) were selected as typical examples of this laser design in a Gaussian transverse mode. The numerical solution of these equations was made using Matlab software by selecting the basic parameters from the recently published scientific articles for the laser design of these crystal hosts. According to this simulation, this article studied the effect o
... Show MoreThis work presents the characteristics of plasma produced by fundamental wavelength (1064 nm) Q- switched Nd:YAG laser on Ag:Ni alloy in distilled water were investigated at different laser energies by optical emission spectroscopy technique. The size of produced nanoparticles from Ag:Ni target in distilled water were studied, by x-ray diffraction, UV-visible absorbance and atomic force microscopy, at different laser energies. Spectroscopic measurements show that electron temperature and electron density increase with increasing laser energy. It was found from AFM measurements that the produced nanoparticle size decrease from 97.13 nm to 71.20 nm, while XRD shows that the crestalline size decrease from 15.5 nm to 9 nm with increasing pul
... Show MoreThe objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses and dimensions of the laser w
... Show MoreThis research reports an error analysis of close-range measurements from a Stonex X300 laser scanner in order to address range uncertainty behavior based on indoor experiments under fixed environmental conditions. The analysis includes procedures for estimating the precision and accuracy of the observational errors estimated from the Stonex X300 observations and conducted at intervals of 5 m within a range of 5 to 30 m. The laser 3D point cloud data of the individual scans is analyzed following a roughness analysis prior to the implementation of a Levenberg–Marquardt iterative closest points (LM-ICP) registration. This leads to identifying the level of roughness that was encountered due to the range-finder’s limitations in close
... Show MoreThis study investigates the digestion of cow dung (CD) for biogas production at laboratory scales. The study was carried out through anaerobic fermentation using cow dung as substrate. The digester was operated at ambient temperatures of 39.5 °C for a period of 10 days. The effect of iron powder in controlling the production of hydrogen sulfide (H2S) has been tested. The optimum concentration of iron powder was 4g/L with the highest biogas production. A Q – swatch Nd:YAG laser has been used to mix and homogenize the components of one of the six digesters and accelerate digestion. At the end of digestion, all digestions effluent was subjected to 5 laser pulses with 250mJ/pules to dispose waste biomass.
Improvement of optoelectrical characteristics of phosphorus diffused silicon photodiodes by Q-switched Nd:YAG laser pulses was investigated. Laser pulses have dissolved the precipitation of phosphorus resulted during thermal diffusion process. The experimental data show that responsivity higher than (0.32 A/W) at 850 nm can be achieved after laser annealing with (1.5 MW/cm2) for 6 shots.
Fluorescence excitation by Nd:YAG pumped dye laser and single vibrational level fluorescence
spectra of 1,3 benzodioxole in a supersonic jet have been obtained and interpreted. The previous assignment of
the 0 0
0 band was incorrect. In addition, many other bands involving n20 and n19 vibrations of a2 symmetry were
confirmed. As far as a1 totally symmetric vibration is concerned. The n14 was assigned to be located in the fivemembered
ring whereas n13 seem to be located in the benzene ring as a result of the electronic transition in the
benzene ring which affects n13 and not n14 wavenumber.
Semiconductor laser is used in processing many issues related to the scientific, military, medical, industrial and agricultural fields due to its unique properties such as coherence and high strength where GaN-based components are the most efficient in this field. Current technological developments mention to the strong connection of GaN with sustainable electronic and optoelectronic devices which have high-efficiency. The threshold current density of Al0.1Ga0.9N/GaN triple quantum well laser structure was investigated to determine best values of the parameters affecting the threshold current density that are well width, average thickness of active region, cavity length, reflectivity of cavity mirrors and optical confinement factor. The opt
... Show More