Obliquely deposited (70o) Bi, Sb, and Bi-Sb alloy thin films have been prepared by thermal
resistive technique. Structural properties of these films were studied using XRD. Their resistance and
voltage responsivity for Nd:YAG and CO2 laser pulses have been recorded as function of operating
temperature between 10 oC and 120 oC. It was found that the maximum responsivity for these detectors
can be obtained at 75 oC. On the other hand, the dependence of responsivity on the width of detectors was
investigated.
The mechanical properties and microstructure of hot-rolled steel are critical in determining its performance in industrial applications, particularly when exposed to elevated temperatures. This study examines the effects of varying temperatures and soaking times on these properties through a series of controlled experiments. The primary objective was to optimize the key response parameters, including tensile strength, yield strength, and elongation, by analyzing the influence of temperature and time. A full factorial design approach was used, applying the desirability function theory to explore all possible combinations and identify optimal processing conditions. The experimental results showed that the soaking time played a critica
... Show MoreThe global rise in temperature and the desert climatic conditions prevalent in Middle Eastern countries have exacerbated rutting distress in heavily trafficked highways. Conventional asphalt binders with a high-temperature performance grade (PG 70) have proven inadequate under such extreme conditions, necessitating the development of modified binders with enhanced high-temperature performance. While polymer modification using styrene-butadiene-styrene (SBS), an elastomeric polymer, and ethylene-vinyl acetate (EVA), a plastomeric polymer, has been widely studied, limited research provides a direct comparison of their effectiveness at both the binder and mixture levels under extremely high-temperature conditions. This study addresses this gap
... Show MoreSiO2 nanostructure is synthesized by the Sol-Gel method and thin films are prepared using dip coating technique. The effect of laser densification is studied. X-ray Diffraction (XRD), Fourier Transformation Infrared Spectrometer (FTIR), and Field Emission Scanning Electron Microscopy (FESEM) are used to analyze the samples. The results show that the silica nanoparticles are successfully synthesized by the sol-gel method after laser densification. XRD patterns show that cristobalite structure is observed from diode laser (410 nm) rather than diode laser (532 nm). FESEM images showed that the shape of nano silica is spherical and the particles size is in nano range (? 100 nm). It is concluded that the spherical nanocrystal structure of silica
... Show MoreThe triggering effect for the face pumping of Nd:YVO4 disc medium of 4×5×0.5 mm was investigated using bulk diode laser at different resonator cavity length in pulse mode and at repetition rate of 1.3kHz. The maximum emitted peak power was found to be 100, 82, and 66 mW for resonator lengths of 10, 13.5, and 17.5 cm respectively, while the threshold pumping power was found to be 41mW. The maximum emitted peak power obtained was 300 mW when using external triggering and 10cm length, with repetition of 3Hz.
Laue back reflection patterns for quartz crystal are indexed by using Orient Express- program to simulate orientation of single crystals from assignment of principle zones. An oriented quartz single crystal was used as a substrate to deposit Zn metal by controlled thermal evaporation to achieve single crystal films of Zn that are subsequently evaluated by x-ray powder diffraction.
In this report Silver doped Tin Sulfide (SnS) thin films with ratio of (0.03) were prepared using thermal evaporation with a vacuum of 4*10-6 mbar on glass with (400) nm thickness and the sample annealing with ( 573K ). The optical constants for the wavelengths in the range (300-900) nm and Hall effect for (SnS and SnS:3% Ag) films are investigated and calculated before and after annealing at 573 K. Transition metal doped SnS thin films the regular absorption 70% in the visible region, the doping level intensification the optical band gap values from 1.5- 2 eV. Silver doped tin sulfide (SnS) its direct optical band gap. Hall Effect results of (SnS and SnS:3% Ag) films show all films were (p-type) electrical conductivity with resistivity of
... Show MoreThe energy density state are the powerful factor for evaluate the validity of a material in any application. This research focused on examining the electrical properties of the Se6Te4- xSbx glass semiconductor with x=1, 2 and 3, using the thermal evaporation technique. D.C electrical conductivity was used by determine the current, voltage and temperatures, where the electrical conductivity was studied as a function of temperature and the mechanical electrical conduction were determined in the different conduction regions (the extended and localized area and at the Fermi level). In addition, the density of the energy states in these regions is calculated using the mathematical equations. The constants of energy density states are det
... Show More
