The microstructures of rapidly solidified laser clad layers of laser cladding of Inconel 617 with different nickel-aluminum premixed clad powders are discussed. The effect of different cladding speeds on the microstructures of rapidly solidified laser clad layers is discussed too. The detailed microstructural results showed that different growth mechanisms are produced during rapid solidification. These are planar, cellular, cellular/dendritic and dendritic.
Pumping a BBO crystal by a violet diode laser with a wavelength of (405 nm) output power of (24 mW) and a line width of (3nm) was employed to generate entangled photons with a wavelength of 810 nm by achieving type II phase matching conditions.The coincidence count rate obtained in this experiment was in the range of (18000) counts/s. Two BBO crystals with different thicknesses of (4 mm and 2 mm) were tested, where maximum count rates of about (18000) counts/s was obtained with a (5*5*2) mm BBO crystal where the short coherence time for the pumping source was tolerated by using shorter BBO crystals. Also, the effect of compensating crystal on the walk-off effect was studied. The coincidence count rates were increased by using these crystal
... Show MorePulsed laser ablation in liquid (PLAL) technique can produce high purity nanoparticles, it is a top-down physical method based on the principle of dividing metal ion bulk precursors into metal atoms, this method was used in this work to synthesis cobalt nanoparticals (CoPNs) with the use of Nd: YAG laser with two wavelengths (355 nm) and (532 nm) at energies (500 mJ) and (600 mJ) respectively, with number of pulses (1000,1100, 1200, 1300, and 1400) for each wavelength. The properties of the prepared nanoparticles were studied by UV-Vis, XRD, SEM with EDX, AFM, and FTIR analysis and then its antibacterial activity was studied by applying it on two types of bacteria with gram-positive (Staphylococcus aureus, Streptococc
... Show MoreIn this work, the spectra of plasma glow produced by Nd:YAG laser operated at 1.064 μm on Al-Mg alloys with same molar ratio samples in air were analyzed by comparing the atomic lines of aluminum and magnesium with that of strong standard lines. The effect of laser energies on spectral lines, produced by laser ablation, were investigated using optical spectroscopy, the electron density was measured utilizing the Stark broadening of magnesium-aluminum lines and the electron temperature was calculated from the standard Boltzmann plot method. The results that show the electron temperature increases in magnesium and aluminum targets but decreases in magnesium: aluminum alloy target, also show the electron density increase all the aluminum,
... Show MoreIn this work, the optical emission spectrum technique was used to analyze the spectrum resulting from the CdO:Sn plasma produced by laser Nd:YAG with a wavelength of (1064) nm, duration of (9) ns, and a focal length of (10) cm in the range of energy of 500-800 mJ. The electron temperature (Te) was calculated using the in ratio line intensities method, while the electron density (ne) was calculated using Saha-Boltzmann equation. Also, other plasma parameters were calculated, such as plasma (fp), Debye length (λD) and Debye number (ND). At mixing ratios of X=0.1, 0.3 and 0.5, the CdO1-X :SnX plasma spectrum was recorded for different energies. The change
... Show MoreThis is prospective study began in Jan. 2003 and concluded in April 2004, was undertaken to examine the benefits of 810 nm diode laser in treatment of four patient with bilateral vocal cord paralysis also to compare the results with conventional treatment Material and methods: 810 nm diode laser 15 watts was used in these cases under general anesthesia, and induction of anesthetic drug done through tracheostomy tube in all patients. All patients were decanulated “Tracheostomy tube removed”, the voice of all preserved within normal. Laser surgery in this case has more benefit and advantage than conventional methods even if the patient need more than on session of laser operation because of high success rate, less complication and easy
... Show MoreLaser ablation of a silver target immersed in distilled water using Nd:YAG laser with a fundamental wavelength of 1064nm was carried out to fabricate silver nanoparticles (Ag NPs) with different laser energy in the presence and absence of magnetic field. UV-Visible spectrum showed that the nanoparticles are almost spherical in shape. The number of Ag NPs increased by increasing laser energy while their particle size was reduced by increasing laser energy without magnetic field. In the presence of magnetic field, the size of Ag NPs increased slightly by increasing laser energy. According to AFM results, the presence of magnetic field did not affect the average diameter of Ag NPs. The presence of a magn
... Show MoreIn this work, the effect of laser energy on the properties of a calcium plasma generated by a Q-switched Nd: YAG laser at the fundamental wavelength was studied using spectroscopy. The Boltzmann plot and Stark broadening method were used to measure the main plasma parameters (electron temperature and electron density). The electron temperature ranged ( 0.169 -0.172 ) eV, the electron density ranged ( 2.10 – 2.63 ) for laser energy range of ( 400 – 700) mJ. Other basic plasma properties were also measured, including the Debye length, the number of particles in the Debye sphere, and the plasma frequency. Laser energy affects all plasma parameters, according to our results.
In this work, the optical emission spectrum technique was used to analyze the optical emission spectrum of (CdO: Fe) plasma produced by laser Nd: YAG with a wavelength of (532) nm, a period of 10 ns, and a focal length of 10 cm in the energy range of (200-500) mJ. The electron temperature (Te) was determined using the method of line intensities ratio. Using the Saha-Boltzmann equation, the electron density (ne) was determined. Other plasma parameters such as plasma frequency (fp), Debye length (λD) and Debye number (ND) were also measured. The CdO: Fe (at a mixing ratio of X= 0.5.) plasma spectrum was observed for different energies. As a fu
... Show MoreThe aim of present work is to improve mechanical and fatigue properties for Aluminum alloy7049 by using Nano composites technique. The ZrO2 with an average grain diameter of 30-40 nm, was selected as Nano particles, to reinforce Aluminum alloy7049 with different percentage as, 2, 4, 6 and 7 %. The Stir casting method was used to fabricate the Nano composites materials due to economical route for improvement and processing of metal matrix composites. The experimental results were shown that the adding of zirconium oxide (ZrO2) as reinforced material leads to improve mechanical properties. The best percentage of improvement of mechanical properties of 7049 AA was with 4% wt. of ZrO2 about (7.76% ) for ultim
... Show More