In the present work, the feasibility of formation near-ideal ohmic behavior of In/n-Si contact efficiently by 300 s duration Nd:YAG pulsed laser processing has been recognized. Several laser pulses energy densities have been used, and the optimal energy density that gives best results is obtained. Topography of the irradiated region was extensively discussed and supported with micrographic illustrations to determine the surface condition that can play the important role in the ohmic contact quality. I-V characteristics in the forward and reverse bias and barrier height measurements have been studied for different irradiated samples to determine the laser energy density that gives best ohmic behavior. Comparing the current results with published results, it is found that these results are competitive and meet the standards of good ohmic contact, specific contact resistance of 1.9 x 10-4 .cm2 has been obtained at 21.1 J.cm-2 laser energy density, which is the lowest value ever reported for In/n-Si.
In this study, a double frequency Q-switching Nd:YAG laser beam (1064 nm and λ= 532 nm, repetition rate 6 Hz and the pulse duration 10ns) have been used, to deposit TiO2 pure and nanocomposites thin films with noble metal (Ag) at various concentration ratios of (0, 10, 20, 30, 40 and 50 wt.%) on glass and p-Si wafer (111) substrates using Pulse Laser Deposition (PLD) technique. Many growth parameters have been considered to specify the optimum condition, namely substrate temperature (300˚C), oxygen pressure (2.8×10-4 mbar), laser energy (700) mJ and the number of laser shots was 400 pulses with thickness of about 170 nm. The surface morphology of the thin films has been studied by using atomic force microscopes (AFM). The Root Mean Sq
... Show MoreIn the present work, HgBa2Can-1CunO2n+2+δ superconducting thin films with (100) nm thickness were (n=1, 2 and 3) prepared by Pulsed Laser Deposition technique on glass substrate at R.T (300) K, have been synthesize. The effect of Cu content on the structural, surface morphology, optical and electrical properties of HgBa2Can-1CunO2n+2+δ films were investigated and analyzed. The results of XRD analysis show that all samples are polycrystalline structure with orthorhombic phase, the change of Cu concentration in samples produce changes in the mass density, lattice parameter and the ratio (c/a). AFM techniques were used to examine the surface morphology of HgBa2Can-1CunO2n+2+δ superconducting films, the study showed the values of surface rou
... Show MoreSolid state blue laser source is a solid state laser include generation of IR laser light 1064 nm and companied with other wavelength 810 nm that invented from other active medium (Tm:ZBLAN) and non-linear crystal (CLBO) are used to generate fourth harmonic of the resultant wavelength 1874 nm that is blue laser light of 460nm. Several optical component have been designed by multilayer dielectric structure and anti reflection coating analysis. By using MATLAB soft ware, the simulation done and used the following non linear material (ZrO2, HfO2, MgO, SiO, Ta2O5 CaF2) and other linear material (ZnO, MgF2, GaAs, AlAs, BaF2, LiF, TiO2) as coating material. The result showed that as more quarter wave layers are added to the structure, the refl
... Show MoreWe report here the observation of 16 µm superradiance laser action generated from optical pumping of CF4 gas molecules (which is cooled to 140 Kº by a boil-off liquid-N2) by a TEA-CO2 laser 9R12 line. Output laser pulses of 7 mJ and 200 ns have been obtained.
In this work, the structure properties of nano Lead sulfide PbS thin films are studied. Thin samples were prepared by pulse laser deposition and deposited on glass substrates at wavelength 1064nm wavelength with a various laser energies (200,300,400,500)nm. The study of atomic force microscope (AFM) and X-ray diffraction as well as the effect of changing the laser energy on the structural properties has been studied. It has been observed that the membrane formed is of the polycrystalline type and the predominant phase is the plane (111) and (200). The minimum grain size obtained was 16.5 nm at a laser energy about 200 mJ. The results showed that thin films of average granular sizes (75 nm) could be prepared.As for the optical properties,
... Show MoreIn this work, the emission spectra and atomic structure of the aluminum target had been studied theoretically using Cowan code. Cowan code was used to calculate the transitions of electrons between atomic configuration interactions using the mathematical method called (Hartree-Fock). The aluminum target can give a good emission spectrum in the XUV region at 10 nm with oscillator strength of 1.82.
The hydrodynamic properties of laser produced plasma (LPP) were investigated for the purpose of creating a light source working in the EUV region. Such a light source is very important for lithography (semiconductor manufacturing). The improved MEDUSA (Med103) code can calculate the plasma hydrodynamic properties (velocity, electron density,
In this study, the effect of grafting with magnesium (Mg) ratios (0.1, 0.3, 0.5) on the structural and optical properties of cadmium oxide films (CdO) was studied, as these films were prepared on glass bases using the method of pulse laser deposition (PLD). The crystallization nature of the prepared membranes was examined by X-ray diffraction technique (XRD), which showed that the synthesis of the prepared membranes is polycrystalline, and (AFM) images also showed that the increased deformation with magnesium led to an increase in the grain size ratio and a decrease in surface roughness, as well as the absorption coefficient was calculated. And the optical energy gap for the prepared membranes, where it was found that the absorption coef
... Show MoreIn this study, (50–110 nm) magnetic iron oxide (α-Fe2O3) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results sh
... Show MoreLaser assisted skin wound closure offers many distinct advantages over conventional closure
techniques. The objective of this in vitro experimental study, carried out at the Institute of Laser for
Postgraduate Studies/Baghdad University, was to determine the effectiveness of 980 nm diode laser in
welding of human skin wounds. Multiple 3-4 cm long full thickness incisions in a specimen of human
skin obtained from the discarded panniculus of an Abdominoplasty operation were tried to be laser
welded using a 4 mm spot diameter laser beam from a 980 nm diode laser at different laser parameters
and modes of action. The tensile strength at the weld site was analyzed experimentally. Although laser
assisted wound welding did
In this paper, we propose a new and efficient ferroelectric nanostructure metal oxide lithium niobate [(Li1.075Nb0.625Ti0.45O3), (LNTO)] solid film as a saturable absorber (SA) for modulating passive Q-switched erbium-doped fiber laser (EDFL). The SA is fabricated as a nanocomposite solid film by the drop-casting process in which the LNTO is planted within polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] as host copolymer. The optical and physical characteristics of the solid film are experimentally established. The SA is incorporated within the cavity of EDFL to examine its capability for producing multi-wavelength laser. The experimental results proved that a multi-wavelength laser is produced, where stable four lines with central
... Show More