In humans, Pseudomonas aeruginosa is the second most frequent gram negative nosocomial pathogen in hospitals and has the highest case-fatality rate of all hospital-acquired bacteremia because of the hardy resistance of these bacteria to mechanical cleansing as well as to disinfectant, and many antibiotics. The susceptibility of bacteria against the antibiotics is modulated by several local factors such as temperature which modified drug efficacy, so this study was carried out to evaluate the effect of different temperature (20,42,45)Ċon the susceptibility of Pseudomonas aeruginosa to the minimum inhibitory concentrations (MIC) of the antimicrobial agents before and after irradiation. The samples collected from 150 persons suffering from burns-wounds infections, thirty-five isolates of pseudomonas aeruginosa bacteria were obtained depending on morphological and biochemical tests. Following exposure of Pseudomonas aeruginosa isolates to the diode laser with 805nm wavelength,3W output power and (5,10,15) minutes exposure times in combination with different temperature and different concentrations of ( cefotaxim, amikacin, chloramphenicol) antibiotics, highly observable change in the MIC value was achieved , the bacterial isolates became sensitive to chloramphenicol at the three exposure times and 100% killing of the cells was observed at 15 minutes exposure time at temperature 45Ċ in absence of the antibiotics. In conclusion, 3W diode laser in combination with temperature 45Ċ was the best condition that reduces the MIC value, and killing bacteria at 10 minutes exposure time.
Introduction
Since the last century, the laser occupied a large degree of attention in the scientific and technological fields. Invention of laser causes a chain of important changes in the science development especially in physics, chemistry, biology and electronics, in addition to its industrial and medical applications. For this reason the laser enters in many fields and introduces solution to many problems.
Many lasers have been used successfully for treating many cases of infection that caused by bacteria such as E.coli, Staphylococcus aureus and Pseudomonas aeruginosa. The resistance of Pseudomonas aeruginosa to many antibiotics form a big problem, especially in burns and wounds infections. Many studies have been introduced to investigate the effect of laser on microorganisms,a lotof their were related to the susceptibility of bacteria to antibiotics. This work is a trial in this regard.
Pseudomonas aeruginosa
One of the most common microorganisms encounted in hospital infection. It was isolated from various sources like air, floor, sinks and even disinfectant (Iglewski, 1980).
Pseudomonas aeruginosa is frequently present in
An experiment was carried out to study the effect of soil organic carbon (SOC) and soil texture on the distance of the wetting front, cumulative water infiltration (I), infiltration rate (IR), saturated water conductivity (Ks), and water holding capacity (WHC). Three levels ( 0, 10, 20, and 30 g OC kg-1 ) from organic carbon (OC) were mixed with different soil materials sandy, loam, and clay texture soils. Field capacity (FC) and permanent wilting point (PWP) were estimated. Soil materials were placed in transparent plastic columns(12 cm soil column ), and water infiltration(I) was measured as a function of time, the distance of the wetting front and Ks. Results showed that advance we
A nanocrystalline CdS thin film with 100 nm thickness has been prepared by thermal evaporation technique on glass substrate with substrate temperature of about 423 K. The films annealed under vacuum at different annealing temperature 473, 523 and 573 K. The X-ray diffraction studies show that CdS thin films have a hexagonal polycrystalline structure with preferred orientation at (002) direction. Our investigation showed the grain size of thin films increased from 9.1 to 18.9 nm with increasing the annealing temperature. The optical measurements showed that CdS thin films have direct energy band gap, which decreases with increasing the annealing temperature within the range 3.2- 2.85 eV. The absorbance edge is blue shifted. The absorption
... Show MoreDye-sensitized solar cell (DSSC) is one of the photochemical electric cells, which consists of the photoelectrode, the dye, the electrolyte, and the counter electrode. The advantage of DSSC is the low cost of the solar energy conversion into electricity because of inexpensive materials and the relative ease of the fabrication processes. In this study was selected solvent dye resolve to know most efficient in terms of conversion efficiency. A dye solution of water or ethanol and maxing in which eosin – y dissolves behaves like a colloid and explores the effect of sintering temperature of TiO2 films on the efficiency of dye sensitized solar cells. A study conducted on several samples at different temperatures. Exemplary efficiency of the
... Show MoreWhen a vehicle is left parked in the sun for an extended period, the gathered heat causes damage to several interiors within the cabin and causes discomfort for people and animals left inside the car. In the present work, the effect of the orientation of a parked white minibus on temperature distribution and cooling load calculation is studied experimentally in an open environment. Two different cases were studied facing south and facing east. For several hours, the temperature inside the car cabin had been monitored and measured at five separate locations. The cooling load calculations are carried out based on the experimental measurements. The results show that the overheating of parked cars always happens as a result
... Show MoreDensity data of alum chrom in water and in aqueous solution of poly (ethylene glycol) (1500) at different temperatures (288.15, 293.15, 298.15) k have been used to estimate the apparent molar volume (Vθ), limiting apparent molar volume (Vθ˚) experimental slope (Sv) and the second derivative of limiting partial molar volume [δ2 θ v° /δ T2] p .The viscosity data have been analyzed by means of Jones –Dole equation to obtain coefficient A, and Jones – Dole coefficient B, Free activation energy of activation per mole of solvent, Δμ10* solute, Δμ20* the activation enthalpy ΔH*,and entropy, ΔS*of activation of viscous flow. These results have been discussed
... Show MoreThe pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o. The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and real and
... Show MoreThe pure and Sb doped GeSe thin films have been prepared by thermal flash evaporation technique. Both the structural and optical measurement were carried out for as deposited and annealed films at different annealing temperatures.XRD spectra revealed that the all films have one significant broad amorphous peak except for pure GeSe thin film which annealed at 573 K, it has sharp peak belong to orthorhombic structure nearly at 2θ=33o . The results of the optical studies showed that the optical transition is direct and indirect allowed. The energy gap in general increased with increasing annealing temperature and decreased with increase the ratio of Sb dopant. The optical parameters such as refractive index, extinction coefficient and r
... Show MoreIn this work we study the influence of the laser pulse energy and ablation time on the aluminum nanoparticles productivity during nanosecond laser ablation of bulk aluminum immersed in liquid.
Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 3-8 minutes using the 1064 nm wavelength of a Nd:YAG laser with energies of 300-500 mJ per pulse.The laser energy was varied between 300 and 500 mJ/pulse, whereas the ablation time was set to 5 minutes. UV-Visible absorption spectra was used for the characterization and comparison of products.
Biotreatment using immobilized cells (IC) technology has proved to be the most promising and most economical approach for the removal of many toxic organic pollutants found in petroleum-refinery wastewater (PRW) such as phenol. This study was undertaken to evaluate the degradation of phenol by Pseudomonas cells individually immobilized in two different bio-carrier matrices including polyvinyl alcohol-guar gum (PVA-GG) and polyvinyl alcohol-agar agar (PVA-AA). Results of batch experiments revealed that complete removal of phenol was attained in the first cycle after 150 min using immobilized cells (IC) in both PVA-GG and PVA-AA. Additional cycles were confirmed to evaluate the validity of recycling beads of immob
... Show More