In humans, Pseudomonas aeruginosa is the second most frequent gram negative nosocomial pathogen in hospitals and has the highest case-fatality rate of all hospital-acquired bacteremia because of the hardy resistance of these bacteria to mechanical cleansing as well as to disinfectant, and many antibiotics. The susceptibility of bacteria against the antibiotics is modulated by several local factors such as temperature which modified drug efficacy, so this study was carried out to evaluate the effect of different temperature (20,42,45)Ċon the susceptibility of Pseudomonas aeruginosa to the minimum inhibitory concentrations (MIC) of the antimicrobial agents before and after irradiation. The samples collected from 150 persons suffering from burns-wounds infections, thirty-five isolates of pseudomonas aeruginosa bacteria were obtained depending on morphological and biochemical tests. Following exposure of Pseudomonas aeruginosa isolates to the diode laser with 805nm wavelength,3W output power and (5,10,15) minutes exposure times in combination with different temperature and different concentrations of ( cefotaxim, amikacin, chloramphenicol) antibiotics, highly observable change in the MIC value was achieved , the bacterial isolates became sensitive to chloramphenicol at the three exposure times and 100% killing of the cells was observed at 15 minutes exposure time at temperature 45Ċ in absence of the antibiotics. In conclusion, 3W diode laser in combination with temperature 45Ċ was the best condition that reduces the MIC value, and killing bacteria at 10 minutes exposure time.
Introduction
Since the last century, the laser occupied a large degree of attention in the scientific and technological fields. Invention of laser causes a chain of important changes in the science development especially in physics, chemistry, biology and electronics, in addition to its industrial and medical applications. For this reason the laser enters in many fields and introduces solution to many problems.
Many lasers have been used successfully for treating many cases of infection that caused by bacteria such as E.coli, Staphylococcus aureus and Pseudomonas aeruginosa. The resistance of Pseudomonas aeruginosa to many antibiotics form a big problem, especially in burns and wounds infections. Many studies have been introduced to investigate the effect of laser on microorganisms,a lotof their were related to the susceptibility of bacteria to antibiotics. This work is a trial in this regard.
Pseudomonas aeruginosa
One of the most common microorganisms encounted in hospital infection. It was isolated from various sources like air, floor, sinks and even disinfectant (Iglewski, 1980).
Pseudomonas aeruginosa is frequently present in
Permanent deformation (rutting) of asphalt mixtures is one of the major forms of distress. Aggregate gradation is one of the most important factors affecting the permanent deformation of asphalt mixtures. Other variables are also important to understand their effects on the mixture such as temperature, binder content and compaction level. For this purpose 6 different aggregate gradations have been chosen and each one of them has been manufactured / tested with different variables. The results showed that at relatively low temperature there is little effect of aggregate packing on the permanent deformation. However, as the temperature increases the effect of gradation becomes apparent, in that the better the packing the better the resistance
... Show MoreKlebsiella pneumoniae have an ability to form biofilm as one of strategies to persist and overcome host defenses. The study aims to evaluate the effectiveness of rosemary essential oil alone and in combination with some antibiotics against biofilm of K. pneumoniae isolated from urine. The antibiotics resistance pattern by disc diffusion method and minimal inhibitory concentration (MIC) of gentamicin, ciprofloxacin, amoxicillin, trimethoprim/ sulfame- thoxazole, cefotoxime and rosemary essential oil were determined. The ability to form biofilm as well as inhibition of biofilm formation of K. pneumoniae was performed. MICs 128, 0.25, 768, 64, 384 and 10 µg/ml were used. The effect of MIC and 1/2 MIC of antibiotics and rosemary essential oil
... Show MoreThe electrical properties of polycrystalline cadmium telluride thin films of different thickness (200,300,400)nm deposited by thermal evaporation onto glass substrates at room temperature and treated at different annealing temperature (373, 423, 473) K are reported. Conductivity measurements have been showed that the conductivity increases from 5.69X10-5 to 0.0011, 0.0001 (?.cm)-1 when the film thickness and annealing temperature increase respectively. This increasing in ?d.c due to increasing the carrier concentration which result from the excess free Te in these films.
In this study, method for experimentally determining the electron density (ne) and the electron temperature (Te) in the atmospheric Argon plasma jet is used; it is based on optical emission spectroscopy (OES). Boltzmann plot method used to calculate these parameters measured for different values of gas flow rate. The results show that the electron temperature decreasing with the increase of gas flow rate also indicates an increasing in the electron density of plasma jet with increasing of gas flow rate.
In the present work, heterojunction diode detectors will be prepared using germanium wafers as a substrate material and 200 nm tin sulfide thickness will be evaporated by using thermal evaporation method as thin film on the substrate. Nd:YAG laser (λ=532 nm) with different energy densities (5.66 J/cm2 and 11.32 J/cm2) is used to diffuse the SnS inside the surface of the germanium samples with 10 laser shots in different environments (vacuum and distilled water). I-V characteristics in the dark illumination, C-V characteristics, transmission measurements, spectral responsivity and quantum efficiency were investigated at 300K. The C-V measurements have shown that the heterojunction were of abrupt type and the maximum value of build-in pot
... Show MoreInSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.
In this research the electrical conductivity measurements were made on the amorphous InAs films prepared by thermal evaporation method in thickness 450 nm and annealed in different temperatures in the range (303- 573) K. The electrical conductivity (σ) showed a decreasing trend with the increasing annealing temperature, while the activation energies (Ea1, Ea2) showed an opposite trend, where the activation energies are increased with the annealing temperature.
The objective was to study the effect of prepared ginkgo biloba extracts against Candida albicans isolated from healthy persons. Conducting susceptibility test, biofilm formation test, phytochemical screening test, and antioxidant activity test. One hundred oral swabs sample were obtained from healthy persons with oral lesion attending dentistry teaching hospital in dentistry college, their age ranged from 1-30 years of both sexex. The studied samples collected through 8 months (April - December / 2018). This study included two different types of ginkgo bilola extracts were prepared as aqueous and ethanolic extracts. Many tests were used, which included isolation and identification of C.albicans, conduct susceptibility test, biofilm form
... Show More