The main purpose of this work is the construction of an optical parametric amplifier (OPA) to generate a 629 nm pulsed laser. KTP nonlinear crystals were used for both parametric oscillation and amplification. A singly resonant parametric oscillator (OPO) is constructed to generate a signal of 1.54 μm and idler of 3.4 μm when the OPO system is pumped by 1.064 μm Q – switched Nd: YAG laser. The signal was then mixed with the pumping beam in OPA system to form the wanted wavelength. The obtained optical conversion efficiency was 60%.
Pumping a BBO crystal by a violet diode laser with a wavelength of (405 nm) output power of (24 mW) and a line width of (3nm) was employed to generate entangled photons with a wavelength of 810 nm by achieving type II phase matching conditions.The coincidence count rate obtained in this experiment was in the range of (18000) counts/s. Two BBO crystals with different thicknesses of (4 mm and 2 mm) were tested, where maximum count rates of about (18000) counts/s was obtained with a (5*5*2) mm BBO crystal where the short coherence time for the pumping source was tolerated by using shorter BBO crystals. Also, the effect of compensating crystal on the walk-off effect was studied. The coincidence count rates were increased by using these crystal
... Show MoreIn this paper, an experimental study has been conducted regarding the indication of resonance in chaotic semiconductor laser. Resonant perturbations are effective for harnessing nonlinear oscillators for various applications such as inducing chaos and controlling chaos. Interesting results have been obtained regarding to the effect of the chaotic resonance by adding the frequency on the systems. The frequency changes nonlinear dynamical system through a critical value, there is a transition from a periodic attractor to a strange attractor. The amplitude has a very relevant impact on the system, resulting in an optimal resonance response for appropriate values related to correlation time. The chaotic system becomes regular under
... Show MoreThere is no doubt that optical fiber technology is one of the most important stages of the communications revolution at all and it is of utmost importance in our daily life. In this work, five fibers with core radii 2.5, 4.5 and 6.5–8.5 μm were designed. The properties of all guided modes have been calculated at a wavelength of 1550 nm by using RP Fiber Calculator. A single-mode fiber is obtained when the core radius approaches the wavelength. As the core radius is increased, the fiber becomes a multimode. The percentage power in the core increases with increasing core radius. The modes profiles were illustrated and compared with the modern references.
An optical video communication system is designed and constructed using pulse frequency modulation (PFM) technique. In this work PFM pulses are generated at the transmitter using voltage control oscillator (VCO) of width 50 ns for each pulse. Double frequency, equal width and narrow pulses are produced in the receiver be for demodulation. The use of the frequency doubling technique in such a system results in a narrow transmission bandwidth (25 ns) and high receiver sensitivity.
to evaluate the effect of various Nd:YAG frequency doubled laser parameters on the acid
dissolution and the progression of in vitro caries like lesions in human enamel.
Materials and Methods: Human extracted caries free upper first premolar teeth were collected for
this study. The irradiated teeth were divided into two groups. The first group was irradiated with
continuous Nd:YAG laser radiation, and the second group was irradiated with chopped Nd:YAG laser
radiation. For the first group, power and exposure time were changed while for the second group
power and number of pulses were changed. The spot diameter was kept constant for all the samples.
Results: using 1.5 W and 3 seconds (exposure time), best results among
The objective of this study is to attempt to provide a quantitative analysis to the causes of unemployment in Iraq and its mechanisms of generation, as well as a review of the most important types of both visible and invisible unemployment, and an attempt to measure the disguised unemployment and analyze the causes. The problem of the research lies in the fact that the Iraqi Economy has been suffered for a long time although its characterized by abundant physical and natural resources, from the existence of the phenomenon of unemployment in the previous two types. Causing a lot of economic problems, represented by the great waste of resources and
... Show MoreAcne scars are one of the most common problems following acne vulgaris. Despite the extensive list of available treatment modalities, their effectiveness depends upon the nature of the scar. Ablative lasers had been used to treat acne scars; one of them is the fractional CO2 laser. The aim of this study is to evaluate the outcome of fractional CO2 laser in the treatment of acne scars. Methods: Since January 2010 to June 2013, using 10600 nm fractional CO2 laser beams, the acne scar of 400 patients, 188 males and 212 females, mean age of 34 years, have been treated and classified according to severity into four grades following Goodman and Baron classification. Each patient underwent 3-5 sessions once monthly. The mean laser exposure time
... Show MoreIn this study, the effect of grafting with magnesium (Mg) ratios (0.1, 0.3, 0.5) on the structural and optical properties of cadmium oxide films (CdO) was studied, as these films were prepared on glass bases using the method of pulse laser deposition (PLD). The crystallization nature of the prepared membranes was examined by X-ray diffraction technique (XRD), which showed that the synthesis of the prepared membranes is polycrystalline, and (AFM) images also showed that the increased deformation with magnesium led to an increase in the grain size ratio and a decrease in surface roughness, as well as the absorption coefficient was calculated. And the optical energy gap for the prepared membranes, where it was found that the absorption coef
... Show MoreAg nanoparticles were prepared using Nd:YAG laser from Ag matel in distilled water using different energies laser (100 and 600) mJ using 200 pulses, and study the effect of the preparation conditions on the structural characteristics of and then study the effect of nanoparticles on the rate of killing the two types of bacteria particles (Staph and E.coli). The goal is to prepare the nanoparticle effectively used to kill bacteria.