Female infection with HPV (human papilla virus) has been established as an essential cause of CIN (cervical intraepithelial neoplasia). The danger of transformation from CIN to frank malignancy should be considered. Objective: The goal of this study is to evaluate the effectiveness of CO2 laser vaporization of ectocervical lesion high grade squamous intraepithelial lesion (HGSIL). Patients and Methods: Four Female out of 150 affected with HGSIL lesions were submitted to CO2 laser vaporization and followed up in 4 months later, and 10 women with HGSIL lesion submitted to electrocautery diathermy for the comparison. Results: Among women treated by CO2 laser vaporization, 3 women had negative results (clear cervix), at 4 months follow up; one woman had recurrence at 4 months following up, the recurrence was due to incomplete destruction of the deepest part of the lesion involving the glandular crypts. Conclusion: The preservation of the anatomical integrity of the cervical tissue offers a better follow-up of those patients. Although other treatment modalities are available, CO2 laser represents an acceptable surgical tool for the management of cervical intraepithelial neoplasia (CIN) with minimal complications.
Background: In young adults, multiple sclerosis is a prevalent chronic inflammatory demyelinating condition. It is characterized by white matter affection, but many individuals also have significant gray matter involvement. A double-inversion recovery pulse (DIR) pattern was recently proposed to improve the visibility of multiple sclerosis lesions. Objective: To find out how well a DIR sequence, FLAIR, and T2-weighted pulse sequences can find MS lesions in the supratentorial and infratentorial regions. Methods: A total of 37 patients with established diagnoses of multiple sclerosis were included in this cross-sectional study. Brain MRI was done using double inversion recovery, T2, and FLAIR sequences. The number of lesions was count
... Show MoreKE Sharquie, GA Ibrahim, AA Noaimi, HK Hamudy, Journal of the Saudi Society of Dermatology & Dermatologic Surgery, 2011 - Cited by 16
The effect of molecules intersystem crossing (Kisc) on characteristics
(energy and duration) of a Passive Q- switched Laser Pulse has been
studied by mathematical description (rate equations model) for
temporal performance of which was used as a saturable absorber
material (passive switch) with laser. The study shows that the energy
and duration pulse are decreasing while the molecules intersystem
crossing into saturable absorber energy levels is increasing.
Aim of the study: Using surface roughness and tensile bond strength tests, the objective of this investigation was to ascertain the impact of laser surface modification on the binding strength of injectable thermoplastic acrylic denture base material to acrylic-based soft-liner material. Materials and methods: Acrylic base soft liner material was bonded to injectable thermoplastic acrylic resin (Deflex). Forty specimens were created (20 disc, 20 dumbbells) 10 of each specimen type as control specimens, and 10 were treated with nano pulse Nd: YAG laser. The data were analyzed using the Kruskal-Wallis test and unpaired t-test (a=.05) and the roughness test was performed utilizing a double column universal test machine. Results: Compar
... Show MoreIn this research, beam expander, BEX, is explained and designed for illuminating the
remote flying target. The BEX is optically designed to be suited for Nd:YAG laser of given
specifications. The BEX is modified to be zoom one to meet the conditions of preventing the
receiving unit; i.e the photodetector, from getting saturated at near and far laser tracking.
Decollimation could be achieved by automatic motor, which controls zoom lens of the BEX
according to the required expansion ratio of beam expander
In this work Laser wireless video communication system using intensity modualtion direct
detection IM/DD over a 1 km range between transmitter and receiver is experimentally investigated and
demonstrated. Beam expander and beam collimeter were implemented to collimete laser beam at the
transmitter and focus this beam at the receiver respectively. The results show that IM/DD communication
sysatem using laser diode is quite attractive for transmitting video signal. In this work signal to noise
ratio (S/N) higher than 20 dB is achieved in this work.
This work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
In this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.