The spectral characteristics and the nonlinear optical properties of the mixed donor (C-480) acceptor (Rh-6G) have been determined. The spectral characteristics are studied by recording their absorption and fluorescence spectra. The nonlinear optical properties were measured by z-scan technique, using Q-switched Nd: YAG laser with 1064 nm wavelength. The results showed that the optimum concentration of acceptor is responsible for increasing the absorption and the emission bandwidth of donor to full range and to 242 nm respectively by the energy transfer process, also the efficiency of the process was increased by increasing the donor and acceptor concentration. The obtained nonlinear properties results of the mixture C-480/ Rh-6G showed a negative nonlinear refractive index and reverse saturation absorption. All the nonlinear optical parameters are linearly dependent with concentration. The origin of optical nonlinearity in the dye may be attributed to laser-heating induced nonlinear effect. Results show that mixture of laser dyes are effective nonlinear optical materials as compared to individual laser dyes.
Ti6Al4V thin film was prepared on glass substrate by RF
sputtering method. The effect of RF power on the optical properties
of the thin films has been investigated using UV-visible
Spectrophotometer. It's found that the absorbance and the extinction
coefficient (k) for deposited thin films increase with increasing
applied power, while another parameters such as dielectric constant
and refractive index decrease with increasing RF power.
Thin films of Mn2O3 doped with Cu have been fabricated using the simplest and cheapest chemical spray pyrolysis technique onto a glass substrate heated up to 250 oC. Transmittance and absorptance spectra were studied in the wavelength range (300 -1100) nm. The average transmittance at low energy was about 60% and decrease with Cu doping, Optical constants like refractive index, extinction coefficient and dielectric constants (εr), (εi) are calculated and correlated with doping process.
The aim of this paper is to investigate the effects of Nd:YAG laser shock processing (LSP) on micro-hardness and surface roughness of 86400Cu-Zn alloy. X-ray fluorescence technique was used to analyze the chemical composition of this alloy. LSP treatment was performed with a Q-switched Nd: YAG laser with a wavelength of 1064 nm. The results show that laser shock processing can significantly increase. The micro-hardness and surface roughness of the LSP-treated sample. Vickers diamond indenter was used to measure the micro-hardness of all samples with different laser pulse energy and the different number of laser pulses. It is found that the metal hardness can be significantly increased to more than 80% by increasing the laser energy and t
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. T
... Show Morethe visual and aesthetic characteristics of the city depending on understanding several levels of visual and aesthetic characteristics to the city, starting with the study of the physical characteristics and morphology of the city in general, and urban style to it, and then study of visual composition of the city from the optical components that affect the composition of the image (visual composition) of the city represent by pathways, borders, regions and the specific features as classified by (Kevin Lynch), and then studying the details and the attention of all elements that would confer the beautiful appearance as necessary for the needs of society and the environment in general, for example, interest in the distribution and c
... Show More<span>We present the linearization of an ultra-wideband low noise amplifier (UWB-LNA) operating from 2GHz to 11GHz through combining two linearization methods. The used linearization techniques are the combination of post-distortion cancellation and derivative-superposition linearization methods. The linearized UWB-LNA shows an improved linearity (IIP3) of +12dBm, a minimum noise figure (NF<sub>min.</sub>) of 3.6dB, input and output insertion losses (S<sub>11</sub> and S<sub>22</sub>) below -9dB over the entire working bandwidth, midband gain of 6dB at 5.8GHz, and overall circuit power consumption of 24mW supplied from a 1.5V voltage source. Both UWB-LNA and linearized UWB-LNA designs are
... Show MoreIn the 1980s, the French Administration Roads LCPC developed high modulus mixtures (EME) by using hard binder. This type of mixture presented good resistance to moisture damage and improved . mechanical properties for asphalt mixtures including high modulus, good fatigue behaviour and excellent resistance to rutting. In Iraq, this type of mixture has not been used yet. The main objective of this research is to evaluate the performance of high modulus mixtures and comparing them with the conventional mixture, to achieve this objective, asphalt concrete mixes were prepared and then tested to evaluate their engineering properties which include moisture damage, resilient modulus, permanent deformation and fatigue characteristics. These prope
... Show More