The long healing time of bone after tooth extraction in order to construct artificial teeth is uncomfortable to the patient because of aesthetic or masticatory problems in addition to the daily visit to dental clinic. The objective of this study was to evaluate the effect of 805 nm diode laser with long time intervals on repair of bone and skin incisions in rabbits through biochemical, radiological and histological findings. Eighteen New-Zealand rabbits were undergone surgical operations to make a cavity in the bone of the lower jaw, the rabbits were divided into two groups:- Group A (control group) containing nine rabbits. Group B (lased group) containing nine rabbits in which two cavities were done, one on the right side and the other on the left side of the mandible. The cavities were subdivided into two groups according to the exposure time. Group B1 (the right side) which was underwent treatment with 805 nm continuous diode laser with output power of 900mW and exposure time of 5 min, every 72 h for two weeks. Group B2 (the left side) which was underwent treatment with 805 nm continuous diode laser with output power of 900mW and exposure time of 10 min, every 72 h for two weeks. The diode laser with a wavelength of 805 nm, power 900 mW and operating on continuous mode was applied directly over the site of the cavity according to the group. Radiological findings, histological and biochemical evaluations for both bone and skin were done for all groups after 7, 14 and 28 days of follow up. The histological results showed that there was a complete wound healing and bone repair at day 28 postoperatively in sub group B2 which is represented by the group treated with 805 nm diode laser with exposure time of 10 min, every 72 hours. In conclusion, the 805 nm continuous wave diode laser with power density of 1.79 W/cm2 and exposure time of 10 min, every 72 h for two weeks was beneficial to stimulate healing in bone and skin.
The effective insulation design of the stress grading (SG) system in form-wound stator coils is essential for preventing partial discharges and excessive heat generation under pulse-width modulation excitation. This paper proposes a method to find the optimal insulation design of the SG system aimed at reducing the dielectric and thermal stresses in the machine coil. The non-uniform transmission line model is used to predict the voltage propagation along the overhang, SG, and slot regions considering the variation in the physical properties of the insulation layers. The machine coil parameters for different insulation materials are calculated by using the finite element method. Two optimization algorithms, fmincon and particle swarm optimiz
... Show MoreThe manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~ 2.73 nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scan
... Show More: The terrestrial snail Eobania vermiculata (O. F. Müller, 1774) were collected from three station in Baghdad Al- Karkh, Iraq between the period from June 2016 to July 2017. Then we studied the life cycle from the egg to maturity. We studied and photographed the external morphology of it’s shell to identified the species. This species was recorded for the first time in Baghdad.
Numerical study has been conducted to investigate the thermal performance enhancement of flat plate solar water collector by integrating the solar collector with metal foam blocks.The flow is assumed to be steady, incompressible and two dimensional in an inclined channel. The channel is provided with eight foam blocks manufactured form copper. The Brinkman-Forchheimer extended Darcy model is utilized to simulate the flow in the porous medium and the Navier-Stokes equation in the fluid region. The energy equation is used with local thermal equilibrium (LTE) assumption to simulate the thermofield inside the porous medium. The current investigation covers a range of solar radiation intensity at 09:00 AM, 12:00 PM, and 04:00
... Show MoreThe present study employed the NAG-4SX3-3D analyzer to precisely measure the energy response of the sensor. The goal was to enhance the understanding of this technology by providing expert information about the device. This technology offers an economical, quick, accurate, and sensitive approach. By utilizing the turbidity method, Cyproheptadine hydrochloride (CPH) was quantified in pharmaceutical samples without the need for additional substances. CPH is expected to undergo a direct reaction with calcium hexacyanoferrate, resulting in the formation of white precipitates. The linear range for CPH measurement falls within the range of (0.008–30) mM. The relative standard deviation (RSD) for six repetitions at concentrations of (6 and
... Show MoreCircular thin walled structures have wide range of applications. This type of structure is generally exposed to different types of loads, but one of the most important types is a buckling. In this work, the phenomena of buckling was studied by using finite element analysis. The circular thin walled structure in this study is constructed from; cylindrical thin shell strengthen by longitudinal stringers, subjected to pure bending in one plane. In addition, Taguchi method was used to identify the optimum combination set of parameters for enhancement of the critical buckling load value, as well as to investigate the most effective parameter. The parameters that have been analyzed were; cylinder shell thickness, shape of stiffeners section an
... Show MoreGas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
In the present work, the efficiency of Tri-octyl Methyl Ammonium Chloride (TOMAC) ionic liquid was investigated as new and green demulsifier for three types of Iraqi crude oil emulsions (Nafut Khana (NK), Kirkuk and Basrah). The separation efficiency was studied at room temperature and by using microwave heating technique. Several batch experiments were done to specify the suitable conditions for the emulsification and demulsification which were specified as 45 minutes and 3000 rpm for crude oil emulsification while the ionic liquid doses were (500,300,150,50) ppm and the conditions of microwave heating were 1000 watt and 50 second as irradiation time. The results were very encouraging especially for NK and Kirkuk crude oil emulsions whe
... Show More