In present work an investigation for precise hole drilling via continuous wave (CW) CO2 laser at 150 W maximum output power and wavelength 10.6 μm was achieved with the assistance of computerized numerical controlled (CNC) machine and assist gases. The drilling process was done for thin sheets (0.1 – 0.3 mm) of two types of metals; stainless steel (sst) 321H, steel 33 (st). Changing light and process parameters such as laser power, exposure time and gas pressure was important for getting the optimum results. The obtained results were supported with computational results using the COMSOL 3.5a software code.
Cytokines are signaling molecules between inflammatory cells that play a significant role in the pathogenesis of a disease. Among these cytokines are interleukins (ILs) 17A and 33, and accordingly, the current case-control study sought to investigate the role of each of the two cytokines in the risk of developing multiple sclerosis (MS). Sixty-eight relapsing-remitting MS (RRMS) Iraqi patients and twenty healthy individuals (control group) were enrolled. Enzyme linked immunosorbent assay (ELISA) kits were used to determine serum levels of IL-17A and IL-33. Results revealed that IL-17A and IL-33 levels were significantly higher in MS patients than in controls (14.1 ± 4.5 vs. 7.5 ± 3.8 pg/mL; p < 0.001 and 65.3 ± 16
... Show MoreIn this research, CNRs have been synthesized using pyrolysis of plastic waste(pp) at 1000 ° C for one hour in a closed reactor made from stainless steel, using magnesium oxide (MgO) as a catalyst. The resultant carbon nano rods were purified and characterized using energy dispersive X-ray spectroscopy (EDX), X-ray powder diffraction (XRD). The surface characteristics of carbon rods were observed with the Field emission scanning electron microscopy (FESEM). The carbon was evenly spread and had the highest concentration from SEM-EDX characterization. The results of XRD and FESEM have shown that carbon Nano rods (CNRs) were present in Nano figures, synthesized at 1000 ° C and with pyrolysis temperature 400° C. One of t
... Show MoreBackground: Low-level laser therapy (LLLT) has been extensively applied to improve wound healing due to some biostimulatory properties presented by laser arrays apparently able to accelerate the repair of soft tissue injuries. However, the role of proinflammatory interlukines not been studied yet. IL_1 ? represent one of the most important poroinflammatory interlukines that involved in wound healing. The goal of this study was to investigate the effect of 790-805nm diode laser on the expression of IL_1 ? during wound healing in mice. Materials and Methods: Standard-sized wounds (1.5cm) were carried out in the face of 96 white albino mice. Half of them underwent LLLT treatment (360 J/cm 2) at 790-805 nm delivered immediately after wound pro
... Show MoreAims: This study was done to investigate the effect of low energy laser therapy on bone healing at the extraction site. Materials and methods:(24) male albino rats were exposed to the extraction procedure of the maxillary first molar on the first day of a seven day experiment and these animals were divided into two main groups; the control group and the laser group. The laser experiment involved using (Ga-As infrared diode laser) from optodent by directing the probe over the extraction site. The control group consisted of 4 rats, and the laser group was subdivided into 5 subgroups of 4 rats each. The laser dose was as follows: B1: a single dose of 5 minutes immediately after extraction.,
... Show MoreWe have studied the effect of applying an external magnetic field on the characteristics of iron oxide (IO) nanoparticles (NPs) synthesized by pulsed laser ablation in dimethylformamide (DMF). The NPs synthesized with and without applying of magnetic field were characterized by Fourier transformation infrared spectroscopy (FT-IR), UV–Vis absorption, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). SEM results confirmed that the particle size was decreased after applying magnetic field.
Reliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co
A numerical simulation is made on the thermal lensing effect in an laser diode end-pumped Nd:YAG laser rod. Based on finite element method (FEM), the laser rod temperature distribution is calculated and the focal length is deduced for a Gaussian and super-Gaussian pump beam profiles.
At the pump power of 20W, the highest temperature located at the center of end-pumped face was 345K, and the thermal lens focal length was 81.4mm along the x-z axis.
The results indicate that the thermal lensing effect sensitively depend on the pump power, waist radius of the pump beam and the pump distribution in a laser rod geometry.
The aim of this study is to identify the effect of particle size and to increase the concentration of Iraqi bentonite on rheological properties in order to evaluate its performance and to know if it can be used as drilling fluid without additives or not. In this study, Iraqi bentonite was carried out by mineral composition (XRD), chemical composition (XRF) and Particle size distribution (PSD), and its rheological properties were measured at different particle size and concentration. The results showed that when the particle size of Iraqi bentonite decreased, and the rheological properties were increased with increased concentration of Iraqi bentonite. Also, Iraqi bentonite was unable to use as drilling fluid without certain additives.
... Show MoreAddition of bioactive materials such as Titanium oxide (TiO2), and incorporation of bio inert ceramic such as alumina (Al2O3), into polyetheretherketone (PEEK) has been adopted as an effective approach to improve bone-implant interfaces. In this paper, hot pressing technique has been adopted as a production method. This technique gave a homogenous distribution of the additive materials in the proposed composite biomaterial. Different compositions and compounding temperatures have been applied to all samples. Mechanical properties and animal model have been studied in all different production conditions. The results of these new TiO2/Al2O3/PEEK biocomposites with different
... Show MoreThe Wang-Ball polynomials operational matrices of the derivatives are used in this study to solve singular perturbed second-order differential equations (SPSODEs) with boundary conditions. Using the matrix of Wang-Ball polynomials, the main singular perturbation problem is converted into linear algebraic equation systems. The coefficients of the required approximate solution are obtained from the solution of this system. The residual correction approach was also used to improve an error, and the results were compared to other reported numerical methods. Several examples are used to illustrate both the reliability and usefulness of the Wang-Ball operational matrices. The Wang Ball approach has the ability to improve the outcomes by minimi
... Show More