The relation between the output power and wavelengths for a 532nm 3W frequency doubled diode pumped solid state laser pumped Ti:Sapphire crystal is investigated. A 20 femtosecond pulse at 800 nm is obtained. A 320 mW is found to be the highest power at 800nm. Below this wavelength value and above the power was found to deviate from highest output value.
Objective: Detection the presumptive prevalence of
silent celiac disease in patients with type 1 diabetes
mellitus with determination of which gender more
likely to be affected.
Methods: One hundred twenty asymptomatic patients
[75 male , 45 female] with type 1 diabetes mellitus
with mean age ± SD of 11.25 ± 2.85 year where
included in the study . All subjects were serologically
screened for the presence of anti-tissue transglutaminase
IgA antibodies (anti-tTG antibodies) by Enzyme-
Linked Immunosorbent Assay (ELISA) & total IgA
was also measured for all using radial
immunodiffusion plate . Anti-tissue transglutaminase
IgG was selectively done for patients who were
expressing negative anti-
The ZnTe alloy was prepared as deposited thin films on the glass substrates at a thickness of 400±20 nm using vacuum evaporation technique at pressure (1 × 10-5) mbar and room temperature. Then the thin films under vacuum (2 × 10-3 mbar) were annealing at (RT,100 and 300) °C for one hour. The structural properties were studied by using X-ray diffraction and AFM, the results show that the thin films had approached the single crystalline in the direction (111) as preferred orientation of the structure zinc-blende for cubic type, with small peaks of tellurium (Te) element for all prepared thin films. The calculated crystallite size (Cs) decreased with the increase in the anne
... Show MoreCrystalline silicon (c-Si) has low optical absorption due to its high surface reflection of incident light. Nanotexturing of c-Si which produces black silicon (b-Si) offers a promising solution. In this work, effect of H2O2 concentrations towards surface morphological and optical properties of b-Si fabricated by two-step silver-assisted wet chemical etching (Ag-based two-step MACE) for potential photovoltaic (PV) applications is presented. The method involves a 30 s deposition of silver nanoparticles (Ag NPs) in an aqueous solution of AgNO3:HF (5:6) and an optimized etching in HF:H2O2:DI H2O solution under 0.62 M, 1.85 M, 2.47 M, and 3.7 M concentrations of H2O<
... Show MorePlant tissue culture considers a benefit biotechnological technique for scientific research especially the production of undifferentiation callus cells and regeneration through suspension or static media. The seedlings of Peganum harmala was used as a source to produce callus mass in vitro in static media through different tissue culture media supplemented by varying combinations of plant growth regulators (PGR). The result illustrates that 2 mg/l of Kinitine with 0.5 mg/l of 2, 4-D was efficient to stimulate callus induction with percent 100% in stem and root of P. harmala and this combination gave a high fresh weight, 1954 mg in root and 1170
mg in stem and high dry weight in root and stem was 74.6
Since decades silver was depended worldwide as a treatment to a lot of diseases
ranging from burn infections, anthrax, and typhoid fever to bacterial conjunctivitis
in stillbirth, but its effectiveness against biofilms is still undetermined. Salmonella is
a major cause of food poisoning outbreaks especially in the third world countries.
Thus, in the present study; the antimicrobial activity of silver nanoparticles (Ag-
NPs) against Salmonella enterica biofilm was examined; their activity was
compared with amino acid; D-Glycin and imipenem antibiotic. The result of the
study revealed that Ag-NPs exhibited considerable antimicrobial property against
Salmonella enterica biofilm where the minimum inhibitory concentrat
Thin films of Zinc Selenide ZnSe have been prepared by using thermal evaporation in vacuum technique (10-5Torr) with thickness (1000, 2700, 4000) A0 and change electrode material and deposited on glass substrates with temperature (373K) and study some electrical properties at this temperature . The graphs shows linear relation between current and voltage and the results have shown increases in the value of current and electrical conductivity with increase thickness and change electrode material from Aluminum to Copper
Cadmium oxide CdO thin films were prepared by successive ionic layer adsorption and reaction (SILAR) technique at varying number of dippings. The CdO thin films were prepared from a source material of Cadmium acetate and ammonium hydroxide solution deposited on glass substrate at 95℃. The prepared thin films were investigated by X-ray diffraction (XRD), Atomic force microscopy (AFM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), and UV-Visible spectrometry. The XRD analysis reveals that the films were polycrystalline with cubic structure having preferential orientation along (1 1 1), (2 0 0), (2 2 0), and (3 1 1) planes. While the tests of the scanning electron microscopy and the atomic force mic
... Show MoreINFLUENCE OF SOME FACTOR ON SOMATIC EMBRYOS INDUCTION AND GERMINATION OF DATE PALM CV BARHI BY USING CELL SUSPENSION CULTURE TECHNIQUEe
A new Turbidimetric method characterized by simplicity, accuracy and speed for determination of Hydronium ion by continuous flow injection analysis. The method was based on the formation of complex Zn3[Fe(CN)6] for Zinc(II) that was eluted by Hydronium ion from cation exchanger column with Potassium hexacyanoferrate(III) for the formation of a pale yellow precipitate and this precipitate was determined using homemade Linear Array Ayah-5SX1-T-1D continuous flow injection analyser. The optimum parameters were 2.7 mL.min-1 flow rate using H2O as a carrier stream, 1.7 mL.min-1 reagent stream, 110 L sample volume and open valve for the purge of the sample segment. Data treatment shows that linear range 0.01-0.1 mol.L-1 for each acids (HClO
... Show MoreThe 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show More