The optimization of artificial gas lift techniques plays a crucial role in the advancement of oil field development. This study focuses on investigating the impact of gas lift design and optimization on production outcomes within the Mishrif formation of the Halfaya oil field. A comprehensive production network nodal analysis model was formulated using a PIPESIM Optimizer-based Genetic Algorithm and meticulously calibrated utilizing field-collected data from a network comprising seven wells. This well group encompasses three directional wells currently employing gas lift and four naturally producing vertical wells. To augment productivity and optimize network performance, a novel gas lift design strategy was proposed. The optimization of gas allocation was executed to maximize oil production rates while minimizing the injected gas volume, thus achieving optimal oil production levels at the most effective gas injection volume for the designated network. The utilization of the PIPESIM Optimizer, founded on genetic algorithm principles, facilitated the attainment of these optimal parameters. The culmination of this study yielded an optimal oil production rate of 18,814 STB/d, accompanied by a gas lift injection rate of 7.56 MMscf/d. This research underscores the significance of strategic gas lift design and optimization in enhancing oil recovery and operational efficiency in complex reservoir systems like the Mishrif formation within the Halfaya oil field.
In this study, iron was coupled with copper to form a bimetallic compound through a biosynthetic method, which was then used as a catalyst in the Fenton-like processes for removing direct Blue 15 dye (DB15) from aqueous solution. Characterization techniques were applied on the resultant nanoparticles such as SEM, BET, EDAX, FT-IR, XRD, and zeta potential. Specifically, the rounded and shaped as spherical nanoparticles were found for green synthesized iron/copper nanoparticles (G-Fe/Cu NPs) with the size ranging from 32-59 nm, and the surface area was 4.452 m2/g. The effect of different experimental factors was studied in both batch and continuous experiments. These factors were H2O2 concentration, G-Fe/CuNPs amount, pH, initial DB15
... Show MoreThis research aims to knowledge of the scope of applying the international specification of which is regarded to occupational health and safety management system (OHSAS 18001) second edition for year 2007 by The AL-Mammon Factory / The General Company For Vegetable Oils Industry in order to diagnosis the gap between specification requirements and reality by using the checklist made based upon the items of the specification, after translating the English copy into Arabic. The results of the research and analysis that occupational health and safety management system in comparison to the specification requirements in all of its main items, which was (%22.26) applied and documented partly, this refer to the existence of great gap (%7
... Show MoreThe research problem lies in determining the beauty ranges between the receiver and the industrial product, The goal of the research, it is the definition of aesthetics in industrial design and its relation to the receiver, and the researcher outcome several conclusions of the, the most important was: 1. The role of accumulated experience, and their interaction with the vision of the artwork in achieving aesthetic perception and levels of artistic and aesthetic values and by the level of growth this taste of the recipient. 2. There are interactive and close relationship be the primary means for the integration of functional and aesthetic meaning the designer meant to get it to the receiver.
Future generations of wireless communications systems are expected to evolve toward allowing massive ubiquitous connectivity and achieving ultra-reliable and low-latency communications (URLLC) with extremely high data rates. Massive multiple-input multiple-output (m-MIMO) is a crucial transmission technique to fulfill the demands of high data rates in the upcoming wireless systems. However, obtaining a downlink (DL) training sequence (TS) that is feasible for fast channel estimation, i.e., meeting the low-latency communications required by future generations of wireless systems, in m-MIMO with frequency-division-duplex (FDD) when users have different channel correlations is very challenging. Therefore, a low-complexity solution for
... Show MoreMulti-carrier direct sequence code division multiple access (MC-DS-CDMA) has emerged recently as a promising candidate for the next generation broadband mobile networks. Multipath fading channels have a severe effect on the performance of wireless communication systems even those systems that exhibit efficient bandwidth, like orthogonal frequency division multiplexing (OFDM) and MC-DS-CDMA; there is always a need for developments in the realisation of these systems as well as efficient channel estimation and equalisation methods to enable these systems to reach their maximum performance. A novel MC-DS-CDMA transceiver based on the Radon-based OFDM, which was recently proposed as a new technique in the realisation of OFDM systems, will be us
... Show MoreWithin this paper, we developed a new series of organic chromophores based on triphenyleamine (TPA) (AL1, AL-2, AL-11 and AL-22) by engineering the structure of the electron donor (D) unit via replacing a phenyle ring or inserting thiophene as a π-linkage. For the sake of scrutinizing the impact of the TPA donating ability and the spacer upon the photovoltaic, absorptional, energetic, and geometrical characteristic of these sensitizers, density functional theory (DFT) and time-dependent DFT (TD-DFT) have been utilized. According to structural characteristics, incorporating the acceptor, π-bridge and TPA does not result in a perfect coplanar conformation in AL-22. We computed EHOMO, ELUMO and bandgap (Eg) energies by performing frequency a
... Show More