The optimization of artificial gas lift techniques plays a crucial role in the advancement of oil field development. This study focuses on investigating the impact of gas lift design and optimization on production outcomes within the Mishrif formation of the Halfaya oil field. A comprehensive production network nodal analysis model was formulated using a PIPESIM Optimizer-based Genetic Algorithm and meticulously calibrated utilizing field-collected data from a network comprising seven wells. This well group encompasses three directional wells currently employing gas lift and four naturally producing vertical wells. To augment productivity and optimize network performance, a novel gas lift design strategy was proposed. The optimization of gas allocation was executed to maximize oil production rates while minimizing the injected gas volume, thus achieving optimal oil production levels at the most effective gas injection volume for the designated network. The utilization of the PIPESIM Optimizer, founded on genetic algorithm principles, facilitated the attainment of these optimal parameters. The culmination of this study yielded an optimal oil production rate of 18,814 STB/d, accompanied by a gas lift injection rate of 7.56 MMscf/d. This research underscores the significance of strategic gas lift design and optimization in enhancing oil recovery and operational efficiency in complex reservoir systems like the Mishrif formation within the Halfaya oil field.
This research aims to study the important of the effect of analysis of covariance manner for one of important of design for multifactor experiments, which called split-blocks experiments design (SBED) to deal the problem of extended measurements for a covariate variable or independent variable (X) with data of response variable or dependent variable Y in agricultural experiments that contribute to mislead the result when analyze data of Y only. Although analysis of covariance with discussed in experiments with common deign, but it is not found information that it is discussed with split-Blocks experiments design (SBED) to get rid of the impact a covariance variable. As part application actual field experiment conducted, begun at
... Show MoreIn this research we present An idea of setting up same split plots experiments in many locations and many periods by Latin Square Design. This cases represents a modest contribution in area of design and analysis of experiments. we had written (theoretically) the general plans, the mathematical models for these experiments, and finding the derivations of EMS for each component (source) of sources of variation of the analysis of variance tables which uses for the statistical analysis for these expirements
a laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the rod that appears for Au NPs, in addition to that, TEM has been an indication of the fact that syn
... Show MoreThe current study aimed the syntheses and characterizations of Gold nanoparticles (Au NPs) using a laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the
... Show MoreThe monetary policy is a vital method used in implementing monetary stability through: the management of income and adjustment of the price (monetary targets) in order to promote stability and growth of real output (non-cash goals); the tool of interest rate and direct investment guides or movement towards the desired destination; and supervisory instruments of monetary policy in both quantitative and qualitative. The latter is very important as a standard compass to investigate the purposes of the movement monetary policy in the economy. The public and businesses were given monetary policy signals by those tools. In fiscal policy, there are specific techniques to follow to do the spending and collection of revenue. This is done in order to
... Show MoreThe pandemic SARS-CoV-2 is highly transmittable with its proliferation among nations. This study aims to design and exploring the efficacy of novel nirmatrelvir derivatives as SARS entry inhibitors by adapting a molecular modeling approach combined with theoretical design. The study focuses on the preparation of these derivatives and understanding their effectiveness, with a special focus on their binding affinity to the S protein, which is pivotal for the virus’s access to the host cell. Considering molecular docking aspects in the scope of a study on nirmatrelvir derivatives and S protein, dynamics simulations with 25 nanoseconds of their binding are explored. The study shows that these derivatives might work as effective antivi
... Show MoreAccurate calculation of transient overvoltages and dielectric stresses from fast-front excitations is required to obtain an optimal dielectric design of power components subjected to these conditions, which are commonly due to switching and lightning, as well as utilization of power-electronic devices. Toroidal transformers are generally used at the low voltage level. However, recent investigations and developments have explored their use at the medium voltage level. This paper analyzes the model-based improvement of the insulation design of medium voltage toroidal transformers. Lumped and distributed parameter models are used and compared to predict the transient response and dielectric stress along the transformer winding. The parameters
... Show More