Carbonate reservoirs are an essential source of hydrocarbons worldwide, and their petrophysical properties play a crucial role in hydrocarbon production. Carbonate reservoirs' most critical petrophysical properties are porosity, permeability, and water saturation. A tight reservoir refers to a reservoir with low porosity and permeability, which means it is difficult for fluids to move from one side to another. This study's primary goal is to evaluate reservoir properties and lithological identification of the SADI Formation in the Halfaya oil field. It is considered one of Iraq's most significant oilfields, 35 km south of Amarah. The Sadi formation consists of four units: A, B1, B2, and B3. Sadi A was excluded as it was not filled with hydrocarbons. The structural and petrophysical models were built based on data gathered from five oil wells. The data from the available well logs, including RHOB, NPHI, SONIC, Gamma-ray, Caliper, and resistivity logs, was used to calculate the petrophysical properties. These logs were analyzed and corrected for environmental factors using IP V3.5 software. where the average formation water resistivity (Rw = 0.04), average mud filtrate resistivity (Rmf = 0.06), and Archie's parameters (m = 2, n = 1.9, and a = 1) were determined. The well-log data values calculated the porosity, permeability, water saturation, and net-to-gross thickness ratio (N/G).
Rock mechanical properties are critical parameters for many development techniques related to tight reservoirs, such as hydraulic fracturing design and detecting failure criteria in wellbore instability assessment. When direct measurements of mechanical properties are not available, it is helpful to find sufficient correlations to estimate these parameters. This study summarized experimentally derived correlations for estimating the shear velocity, Young's modulus, Poisson's ratio, and compressive strength. Also, a useful correlation is introduced to convert dynamic elastic properties from log data to static elastic properties. Most of the derived equations in this paper show good fitting to measured data, while some equations show scatters
... Show MoreAs a reservoir is depleted due to production, pore pressure decreases leading to increased effective stress which causes a reduction in permeability, porosity, and possible pore collapse or compaction. Permeability is a key factor in tight reservoir development; therefore, understanding the loss of permeability in these reservoirs due to depletion is vital for effective reservoir management. The paper presents a case history on a tight carbonate reservoir in Iraq which demonstrates the behavior of rock permeability and porosity as a function of increasing effective stress simulating a depleting mode over given production time. The experimental results show unique models for the decline of permeability and porosity as function effective str
... Show MoreThe identification of a bed’s lithology is fundamental to all reservoir characterization because the physical and chemical properties of the rock that holds hydrocarbons and/or water affect the response of every tool used to measure formation properties. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umr Formation in Luhais well -12 southern Iraq. The available well logs such as (sonic, density, neutron, gamma ray, SP, and resistivity logs) are digitized using the Didger software. The petrophysical parameters such as porosity, water saturation, hydrocarbon saturation, bulk water volume, etc. were computed and interpreted using Techlog software. The lithology prediction of Nahr
... Show MorePetrophysical properties of Mishrif Formation at Amara oil field is determined
from interpretation of open log data of (Am-1, 2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ,11 ,12
and13) wells. These properties include the total, the effected and the secondary
porosity, as well as the moveable and the residual oil saturation in the invaded and
uninvaded zones. According to petrophysical properties it is possible to divided
Mishrif Formation which has thickness of a proximately 400 m, into seven main
reservoir units (MA, MB11, MB12, MB13, MB21, MC1, MC2) . MA is divided into
four secondary reservoir units , MB11 is divided into five secondary reservoir units ,
MB12 is divided into two secondary reservoir units , MB13 is divided into
The heterogeneity nature of carbonate reservoirs shows sever scattering of the data, therefore, one has to be cautious in using the permeability- porosity correlation for calculating permeability unless a good correlation coefficient is available. In addition, a permeability- porosity correlation technique is not enough by itself since simulation studies also require more accurate tools for reservoir description and diagnosis of flow and non-flow units.
Evaluation of reservoir characterization was conducted by this paper for Mishrif Formation in south Iraqi oil field (heterogeneous carbonate reservoir), namely the permeability-porosity correlation, the hydraulic units (HU’s) an
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distri
... Show MoreThe current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
The study intends to interpretation of well logs to determine the petrophysical parameters for Khasib, Tanuma, and Sa'di formations in Halfaya Oil Field. Where this field is located 30 kilometers south-east of the Amara city and it is considered as one of the important fields in Iraq because of the high production of oil, because Khasib, Tanuma, and Sa'di are f carbonates reservoirs formations and important after the Mishrif Formation because of the lack of thickness of the formations compared to the amount of oil production. The Matrix Identification (MID) and the M-N crossplot were used to determine the lithology and mineralogy of the formations; through the diagrm it was found the three formations consisted mainly of calcite with some
... Show MoreThis research deals with the study of the types and distribution of petrographic microfacies and Paleoenvironments of Mishrif Formation in Halfaya oil field, to define specific sedimentary environments. These environments were identified by microscopic examination of 35 thin sections of cutting samples for well HF-9H as well as 150 thin sections of core and cutting samples for well HF-I. Depending on log interpretation of wells HF-1, HF-316, HF-109, IIF-115, and IIF-272, the sedimentary facies were traced vertically through the use of various logs by Petrel 2013 software in addition to previous studies. Microfacies analysis showed the occurrence of six main Paleoenvironments within Mishrif succession, represented
... Show More