Efficient and cost-effective drilling of directional wells necessitates the implementation of best drilling practices and advanced techniques to optimize drilling operations. Failure to adequately consider drilling risks can result in inefficient drilling operations and non-productive time (NPT). Although advanced drilling techniques may be expensive, they offer promising technical solutions for mitigating drilling risks. This paper aims to demonstrate the effectiveness of advanced drilling techniques in mitigating risks and improving drilling operations when compared to conventional drilling techniques. Specifically, the advanced drilling techniques employed in Buzurgan Oil Field, including vertical drilling with mud motor, managed pressure drilling (MPD), rotary steerable system (RSS), and expandable liner hanger (ELH), are investigated and evaluated through case study analyses, comparing their performance to that of conventional drilling techniques. The findings indicate that vertical drilling with mud motor exhibits superior drilling performance and wellbore verticality compared to conventional rotary drilling bottom hole assemblies (BHA) for drilling the 17 ½" hole section. MPD systems employed in the 12 ¼" hole section demonstrate safe drilling operations and higher rates of penetration (ROP) than conventional drilling methods. Rotary steerable systems exhibit reduced tortuosity and achieve higher ROP when compared to mud motor usage in the 8.5" and 6" hole sections. Lastly, investigations of expandable liner hanger cases reveal subpar cement quality in the first case and liner remedial work in the second case, highlighting the successful implementation of ELH techniques in the offset field. Overall, this paper highlights the advantages of utilizing advanced drilling techniques in Buzurgan Oil Field, showcasing their ability to mitigate drilling risks and enhance drilling operations when compared to conventional drilling approaches.
A geological model is a spatial representation of the distribution of sediments and rocks in the subsurface. Where this study on Halfaya oil field; it is located in Missan governorate, 35 km southeast of the city of Amara. It is one of the main fields in Iraq because it is production high oil. This model contains the structure, and petrophysical properties (porosity, water saturation) in three directions. To build 3D geological models of petroleum reservoirs. Khasib, Tanuma, and Sa’di formations in Halfaya oil field have been divided into many layers depending on petrophysical properties and facies.
The Carbonate-clastic succession in this study is represented by the Shuaiba and Nahr Umr Formations deposited during the Albian - Aptian Sequence. The present study includes petrography, microfacies analyses, and studying reservoir characterizations for 5 boreholes within West Qurna oil field in the study area. According to the type of study succession (clastic – Carbonate) there are two types of facies analyses:-Carbonate facies analysis, which showed five major microfacies were recognized in the succession of the Shuaiba Formation, bioclastic mudstones to wackstone, Orbitolina wackestone to packstone, Miliolids wackestone, Peloidal wackestone to packstone and mudstone to wackestone identified as an open shelf toward the deep basin.
... Show MoreThis study is concerned with making comparison in using different geostatistical methods for porosity distribution of upper shale member - Zubair formation in Luhais oil field which was chosen to study.
Kriging, Gaussian random function simulation and sequential Gaussian simulation geostatistical methods were adopted in this study. After preparing all needed data which are contour map, well heads of 12 wells, well tops and porosity from CPI log. Petrel software 2009 was used for porosity distribution of mentioned formation in methods that are showed above. Comparisons were made among these three methods in order to choose the best one, the comparing cri
The present work aims to study the efficiency of coagulation/ flocculation as 1st stage, natural gravity water filter or microfiltration (MF) as 2nd stage and nanofiltration (NF) technology as final stage for treatment of water of main outfall drain (MOD) for injection in Nasiriyah oil field. Effects of operating parameters such as coagulant dosage, speed and time of slow mixing step and settling time in the 1st stage were studied. Also feed turbidity and total suspended solids (TSS) in the 2
... Show MoreIn this paper, we attempt to predict the depositional environments with associated lithofacies of the main reservoir of the late Cretaceous Mishrif carbonate Formation, depending on the analysis of the created seismic isopach map by integrating seismic and well data. The isopach map was created from a 3D-seismic reflection survey carried out at the Dujaila oil field in southeastern Iraq, which is of an area of 602.26 Km2, and integrated with the data of the two explored wells. Based on the interpretation of the seismic isopach map, the diagram of the 3D-depositional environment model of Mishrif Formation was constructed. It showed three distinguished depositional environments, which were graduated from a back reef lithofacies of a shallo
... Show MorePrediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pressur
... Show MoreBox-Wilson experimental design method was employed to optimized lead ions removal efficiency by bulk liquid membrane (BLM) method. The optimization procedure was primarily based on four impartial relevant parameters: pH of feed phase (4-6), pH of stripping phase (9-11), carrier concentration TBP (5-10) %, and initial metal concentration (60-120 ppm). maximum recovery efficiency of lead ions is 83.852% was virtually done following thirty one-of-a-kind experimental runs, as exact through 24-Central Composite Design (CCD). The best values for the aforementioned four parameters, corresponding to the most restoration efficiency were: 5, 10, 7.5% (v/v), and 90 mg/l, respectively. The obtained experimental data had been
... Show MoreSecured multimedia data has grown in importance over the last few decades to safeguard multimedia content from unwanted users. Generally speaking, a number of methods have been employed to hide important visual data from eavesdroppers, one of which is chaotic encryption. This review article will examine chaotic encryption methods currently in use, highlighting their benefits and drawbacks in terms of their applicability for picture security.