Efficient and cost-effective drilling of directional wells necessitates the implementation of best drilling practices and advanced techniques to optimize drilling operations. Failure to adequately consider drilling risks can result in inefficient drilling operations and non-productive time (NPT). Although advanced drilling techniques may be expensive, they offer promising technical solutions for mitigating drilling risks. This paper aims to demonstrate the effectiveness of advanced drilling techniques in mitigating risks and improving drilling operations when compared to conventional drilling techniques. Specifically, the advanced drilling techniques employed in Buzurgan Oil Field, including vertical drilling with mud motor, managed pressure drilling (MPD), rotary steerable system (RSS), and expandable liner hanger (ELH), are investigated and evaluated through case study analyses, comparing their performance to that of conventional drilling techniques. The findings indicate that vertical drilling with mud motor exhibits superior drilling performance and wellbore verticality compared to conventional rotary drilling bottom hole assemblies (BHA) for drilling the 17 ½" hole section. MPD systems employed in the 12 ¼" hole section demonstrate safe drilling operations and higher rates of penetration (ROP) than conventional drilling methods. Rotary steerable systems exhibit reduced tortuosity and achieve higher ROP when compared to mud motor usage in the 8.5" and 6" hole sections. Lastly, investigations of expandable liner hanger cases reveal subpar cement quality in the first case and liner remedial work in the second case, highlighting the successful implementation of ELH techniques in the offset field. Overall, this paper highlights the advantages of utilizing advanced drilling techniques in Buzurgan Oil Field, showcasing their ability to mitigate drilling risks and enhance drilling operations when compared to conventional drilling approaches.
This study aims to develop a recommendation engine methodology to enhance the model’s effectiveness and efficiency. The proposed model is commonly used to assign or propose a limited number of developers with the required skills and expertise to address and resolve a bug report. Managing collections within bug repositories is the responsibility of software engineers in addressing specific defects. Identifying the optimal allocation of personnel to activities is challenging when dealing with software defects, which necessitates a substantial workforce of developers. Analyzing new scientific methodologies to enhance comprehension of the results is the purpose of this analysis. Additionally, developer priorities were discussed, especially th
... Show MoreAbstract
This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m
... Show MoreThe performance analyses of 15 kWp (kW peak) Grid -Tied solar PV system (that considered first of its type) implemented at the Training and Energy Research Center Subsidiary of Iraqi Ministry of Electricity in Baghdad city has been achieved. The system consists of 72 modules arranged in 6 strings were each string contains 12 modules connected in series to increase the voltage output while these strings connected in parallel to increase the current output. According to the observed duration, the reference daily yields, array daily yields and final daily yields of this system were (5.9, 4.56, 4.4) kWh/kWp/day respectively. The energy yield was 1585 kWh/kWp/year while the annual total solar irradiation received by solar array system was 198
... Show MoreIn this work, the dynamic behavior of discrete models is analyzed with Beverton- Holt function growth . All equilibria are found . The existence and local stability are investigated of all its equilibria.. The optimal harvest strategy is done for the system by using Pontryagin’s maximum principle to solve the optimality problem. Finally numerical simulations are used to solve the optimality problem and to enhance the results of mathematical analysis
The evolution in materials’ technology in the last decades resulted in interesting projects that aimed at preserving the environment and energy and reduce pollution. They have been taken the principles of environmental design as a basis for architectural thought, starting from the early stages of the design process ending in choosing appropriate building materials to achieve sustainable buildings, but these trying are limited in our local environment and there isn’t demanded seriousness. The research problem emerges in the ignorance of the environmental aspect (ecological system) when selecting building materials during design process to achieve sustainable buildings. The aim of this research is revealing the mechanisms of selecting
... Show MoreSolar module operating temperature is the second major factor affects the performance of solar photovoltaic panels after the amount of solar radiation. This paper presents a performance comparison of mono-crystalline Silicon (mc-Si), poly-crystalline Silicon (pc-Si), amorphous Silicon (a-Si) and Cupper Indium Gallium di-selenide (CIGS) photovoltaic technologies under Climate Conditions of Baghdad city. Temperature influence on the solar modules electric output parameters was investigated experimentally and their temperature coefficients was calculated. These temperature coefficients are important for all systems design and sizing. The experimental results revealed that the pc-Si module showed a decrease in open circuit v
... Show MoreThe method of coordinate conversion is still considered important and laborious due to the shift from the spatial ellipsoidal (geographic) to the flat planned system. The most common method uses a contiguous UTM system as one of the most reliable systems in the conversion process; however, this system faces a problem in large areas that contain more than one zone. The goal of this research is to create a simple and low computational cost model to represent a non-contiguous semi-UTM geographic coordinates for confined regions of the globe. The considered region taken in this study is the northern parts of Arabian Gulf (including parts of Iraq, Kuwait, Iran, and Saudi Arabia). The determined mathematical mode
... Show MoreThe present work shows a theoretical results that have been used the functional Hybrid of three parameters Lee-Yang-Parr (B3LYP) of the quantum mechanical approach for density functional theory with (Spanish Initiative for Electronic Simulations with Thousands of Atoms) SIESTA code. All calculations were carried out employing the used method at the Gaussian 09 package of programs. It was reported the main point for research on dominance of the bandgap of elongated pi-conjugated molecules by using different chemical groups replacing hydrogen atom in the most molecules that used in this work. The side groups creates another factor that controls the value of the band gap. The dihedral angle between the two pheny
... Show MoreBulk polycrystalline samples have been prepared by the two-step solid state reaction process. It has been observed that as grown Tl2-xHgxSr2Ca2Cu3O10+δ (with x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1) corresponds to the 2223 phase. It has been found that Tc varies with Hg content .The optimum Tc is about 120K for the composition Tl1.6Hg0.4Sr2Ca2Cu3O10+δ.The microstructure for Tl1.6Hg0.4Sr2Ca2Cu3O10+δ observed to be most dense and this phase exhibits the highest stability.
The undertaken study includes investigating the performance and effluent characteristics of the treatment plant of Al-Doura refinery. Influent concentrations for some important contaminants, which are TDS, oil and grease, TSS, COD, BOD, and turbidity were 2595 mg/L, 13934 mg/L, 466.45 mg/L, 2538.9 mg/L, 1739.2 mg/L, and 89.18 NTU, respectively, while the effluent concentrations were 1337.8 mg/L, 0.53mg/L, 21.7mg/L, 25.45 mg/L, 17.81 mg/L, and 7.08 NTU, respectively, giving removal efficiencies of 44.47%, 99.99%, 94.4%, 98.96%, 98.96% and 92.05%, respectively. All these results indicate that Al-Doura wastewater treatment plant was efficient in removing contaminants according to Iraqi and EPA specifications. Hence, the second part of this
... Show More