This research investigates the adsorption isotherm and adsorption kinetics of nitrogen from air using packed bed of Li-LSX zeolite to get medical oxygen. Experiments were carried out to estimate the produced oxygen purity under different operating conditions: input pressure of 0.5 – 2.5 bar, feed flow rate of air of 2 – 10 L.min-1 and packing height of 9-16 cm. The adsorption isotherm was studied at the best conditions of input pressure of 2.5 bar, the height of packing 16 cm, and flow rate 6 Lmin-1 at ambient temperature, at these conditions the highest purity of oxygen by this system 73.15 vol % of outlet gas was produced. Langmuir isotherm was the best models representing the experimental data., and the model parameters were the maximum monolayer coverage (qm) 200 mg. g-1 and Kl 0.00234 L.mg -1. Also, from the Freundlich isotherm model, the sorption intensity (n) indicated favorable sorption of 1.435. The average free energy estimated from the DRK isotherm model was 0.02 KJ.mol-1, which proved the adsorption process to follow physical nature. The results got from experiments showed a coincidence to the pseudo-first-order kinetic model.
The catalytic cracking of three feeds of extract lubricating oil, that produced as a by-product from the process of furfural extraction of lubricating oil base stock in AL-Dura refinery at different operating condition, were carried out at a fixed bed laboratory reactor. The initial boiling point for these feeds was 140 ºC for sample (1), 86 ºC for sample (2) and 80 ºC for sample (3). The catalytic cracking processes were carried out at temperature range 325-400 ºC and initially at atmospheric pressure after 30 minutes over 9.88 % HY-zeolite catalyst load. The comparison between the conversion at different operating conditions of catalytic cracking processes indicates that a high yield was obtained at 375°C, according to gasoline pr
... Show MoreWe studied the effect of certain environmental conditions for removing heavy metal elements from contaminated aqueous solutions (Cd, Cu, Pb, Fe, Zn, Ni, Cr) using the bacterium Bacillus subtilis to appoint the optimal conditions for removal ,The best optimum temperature range for two isolate was 30-35○C while the hydrogen number for the maximum mineral removal range was 6-7. The best primary mineral removal was 100 mg/L, while the maximum removal for all minerals was obtained after 6 hrs of Cu element time and the maximum removal efficiency was obtained after 24 hrs of Cu element. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/minute. Inoculums of 5ml/100ml which contained 1
... Show MoreAir pollution is very important topic for those interested in studying the environment because of its importance and the damage caused by it to human, animal and plant life. This research addresses the concept of air pollution, its causes, and its danger, and sheds light on the influence of climate elements on environmental pollution and the effect of temperature, rain, humidity, wind direction and speed, and atmospheric pressure on the increase or decrease of air pollution. This research discusses the sources of air pollution, including natural ones, including dust, smoke resulting from fires, erupting volcanoes, and others, including those resulting from human uses such as the use of fuel and others. The research addressed the dam
... Show MoreRemoval of Congo red, Rhodamine B, and Dispers Blue dyes from water solution have been achieved using Flint Clay as an adsorbent. The adsorption was studied as a function of contact time, adsorbent dose, pH, and temperature under batch adsorption technique. The equilibrium data fit with Langmuir, Freundlich and Toth models of adsorption and the linear regression coefficient R2 was used to elucidate the best fitting isotherm model. Different thermodynamic parameters, namely Gibb’s free energy, enthalpy and entropy of the on-going adsorption process have also been evaluated. Batch technique has been employed for the kinetic measurements and the adsorption of the three dyes follows a second order rate kinetics. The kinetic investigations al
... Show More