The Fauqi field is located about 50Km North-East Amara town in Missan providence in Iraq. Fauqi field has 1,640 MMbbl STOIIP, which lies partly in Iran. Oil is produced from both Mishrif and Asmari zones. Geologically, the Fauqi anticline straddles the Iraqi/Iranian border and is most probably segmented by several faults. There are several reasons leading to drilling horizontal wells rather than vertical wells. The most important parameter is increasing oil recovery, particularly from thin or tight reservoir permeability. The Fauqi oil field is regarded as a giant field with approximately more than 1 billion barrels of proven reserves, but it has recently experienced low production rate problems in many of its existing wells. This study will concentrate on analyzing the Asmari reservoir as the main production reservoir in this field for an oil gravity of 18 API. While, well (FQ-8) has been selected as a pilot well to verify different development scenarios that could be taken to increase the reservoir production rate. The results show that both drilling lateral sections and performing the stimulation process in some reservoir intervals yield positive results to increase good productivity with different percentages. The lateral sections occasionally gave higher productivity than the stimulation process by (2-3) times.
Geomechanical modelling and simulation are introduced to accurately determine the combined effects of hydrocarbon production and changes in rock properties due to geomechanical effects. The reservoir geomechanical model is concerned with stress-related issues and rock failure in compression, shear, and tension induced by reservoir pore pressure changes due to reservoir depletion. In this paper, a rock mechanical model is constructed in geomechanical mode, and reservoir geomechanics simulations are run for a carbonate gas reservoir. The study begins with assessment of the data, construction of 1D rock mechanical models along the well trajectory, the generation of a 3D mechanical earth model, and runni
This study investigates data set as satellite images of type multispectral Landsat-7, which are observed for AL_Nasiriya city, it is located in southern of Iraq, and situated along the banks of the Euphrates River. These raw data are thermal bands of satellite images, they are taken as thermal images. These images are processed and examined using ENVI 5.3 program. Consequently, the emitted Hydrocarbon is extracted, and the black body algorithm is employed. As well as, the raster calculations are performed using ArcGIS, where gas and oil features are sorted. The results are estimate and determine the oil and gas fields in the city. This study uncovers, and estimates several unexplored oil and gas fields. Whereas,
... Show MoreMeerkat Clan Algorithm (MCA) is a nature-based metaheuristic algorithm which imitates the intelligent behavior of the meerkat animal. This paper presents an improvement on the MCA based on a chaotic map and crossover strategy (MCA-CC). These two strategies increase the diversification and intensification of the proposed algorithm and boost the searching ability to find more quality solutions. The 0-1 knapsack problem was solved by the basic MCA and the improved version of this algorithm (MCA-CC). The performance of these algorithms was tested on low and high dimensional problems. The experimental results demonstrate that the proposed algorithm had overcome the basic algorithm in terms of solution quality, speed a
... Show MoreRecently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreClassifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and
... Show MoreThe aim of this article is to present the exact analytical solution for models as system of (2+1) dimensional PDEs by using a reliable manner based on combined LA-transform with decomposition technique and the results have shown a high-precision, smooth and speed convergence to the exact solution compared with other classic methods. The suggested approach does not need any discretization of the domain or presents assumptions or neglect for a small parameter in the problem and does not need to convert the nonlinear terms into linear ones. The convergence of series solution has been shown with two illustrated examples such (2+1)D- Burger's system and (2+1)D- Boiti-Leon-Pempinelli (BLP) system.
A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the
... Show MoreThis paper proves the existence of face antimagic labeling for double duplication of barycentric subdivision of cycle and some other graphs