Heavy oil is classified as unconventional oil resource because of its difficulty to recover in its natural state, difficulties in transport and difficulties in marketing it. Upgrading solution to the heavy oil has positive impact technically and economically specially when it will be a competitive with conventional oils from the marketing prospective. Developing Qaiyarah heavy oil field was neglected in the last five decades, the main reason was due to the low quality of the crude oil resulted in the high viscosity and density of the crude oil in the field which was and still a major challenge putting them on the major stream line of production in Iraq. The low quality of the crude properties led to lower oil prices in the global markets as well as the high operation cost of production and transportation. The purpose of this paper is testing new technology applications on an Iraqi Heavy Oil Field and specifically (Qaiyarah Oil Field) by applying the cold cracking technique to upgrade Qaiyarah heavy oil properties through using series of electrical/ mechanical activities applied on the heavy crude that generates special kind of vibrations to re-structure the (H-C) bonds in the heavy oil to convert it to lighter crude with lower viscosity/ density which was the outcome of the distillation by reducing the unsaturated components and isolating the minerals and sulfur as sold components. The results were very optimistic, where the density has improved from 16 to 30.5 API degree, sulfur content has reduced from 6.4 to 1.507 weight percent and selling price per barrel would increase by 53% compare to 2.31% cost increment due to the upgrading operation. Therefore, applying the cold cracking technology is convenience for improving Qaiyarah oil properties as the main production stream line will be increased in Iraq.
This article will address autoclave design considerations and
manufacturing working with high pressure low temperature
supercritical drying technique to produce silica aerogel. The design
elects carbon dioxide as a supercritical fluid (31.7 oC and 72.3 bar).
Both temperature and pressure have independently controlling
facility through present design. The autoclave was light weight (4.5
kg) and factory-made from stainless steel. It contains a high pressure
window for monitoring both transfer carbon dioxide gas to liquid
carbon dioxide and watching supercritical drying via aerogel
preparation process. In this work aerogel samples were prepared and
the true apparent densities, total pore volume and pore size
SCADA is the technology that allows the operator to gather data from one or more various facilities and to send control instructions to those facilities. This paper represents an adaptable and low cost SCADA system for a particular sugar manufacturing process, by using Programmable Logic Controls (Siemens s7-1200, 1214Dc/ Dc/ Rly). The system will control and monitor the laboratory production line chose from sugar industry. The project comprises of two sections the first one is the hardware section that has been designed, and built using components suitable for making it for laboratory purposes, and the second section was the software as the PLC programming, designing the HMI, creating alarms and trending system. The system will ha
... Show MoreThis paper describes the use of microcomputer as a laboratory instrument system. The system is focused on three weather variables measurement, are temperature, wind speed, and wind direction. This instrument is a type of data acquisition system; in this paper we deal with the design and implementation of data acquisition system based on personal computer (Pentium) using Industry Standard Architecture (ISA)bus. The design of this system involves mainly a hardware implementation, and the software programs that are used for testing, measuring and control. The system can be used to display the required information that can be transferred and processed from the external field to the system. A visual basic language with Microsoft foundation cl
... Show MoreGeneral Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k
... Show MoreUse of computer simulation to quantify the effectiveness of blowing agents can be an effective tool for optimizing formulations and for the adopting of new blowing agents. This paper focuses on a mass balance on blowing agent during foaming including the quantification of the amount that stays in the resin, the amount that ends up in the foam cells, and the pressure of the blowing agent in the foam cells. Experimental data is presented both in the sense of developing the simulation capabilities and the validating of simulation results.
The operating characteristics of optoelectronic devices depend critically on the properties physical of the constituent materials, interesting compound has been focused on this research formed from group III and V of the periodic table. Thin film n-InSb heterjuntion were successfully fabricated on p-Si substrates by thermal evaporation technique at different annealing temperature (as prepared, 400,500,600) °C. The effect of annealing temperature on the structural, surface morphology, optical and optoelectronic properties of InSb films were investigated and studied. The crystal structure of the film was characterized by X-ray diffraction and techniques. AFM techniques inspect the surface morphology of InSb films, the study presented the val
... Show More