Many oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different from one well to another, from the high-pressure-temperature reservoir to surface conditions. All these factors must be investigated on a case-by-case basis. Because the Halfaya oil field is still developing its petroleum sector, modelling, and forecasting the phase behavior and asphaltene precipitation is crucial. This work used crude oil bottom hole samples with an API of equal to 27 from a well in the Halfaya oil field/Nahr-Umr formation to create a thermodynamic model using Multiflash software. The data included the compositional analysis, the PVT data, and reservoir conditions. The thermodynamic model of asphaltene phase behavior was proposed using the Cubic-Plus association equation of state. All the screening techniques' results revealed the presence of an asphaltene precipitation issue (asphaltene unstable), which was confirmed by a thermodynamic fluid model. The aim of this paper is to predict the problem of asphaltene precipitation so that future proactive remedial methods can be developed to decrease the time and expense associated with it.
In light of today's business world, who faces challenges and intense competition as a result of the rapid evolution of technical and informational, organizations had to respond to variables through the adoption of modern management techniques that reduce the effects of risks and activating the role of the internal control system in order to contribute to the early detection of risks and reduce the negative results expected .The research is to address the problem faced by organizations which still follow the traditional methods in the control activities, and the lack of knowledge of the management and their staff of the importance of the existence of risk management and internal control system takes into account these risks, and the limit
... Show MoreThis study investigates the potential of biogas recovery from used engine oil (UEO) by co-digestion with animals’ manure, including cow dung (CD), poultry manure (PM), and cattle manure (CM). The experimental work was carried out in anaerobic biodigesters at mesophilic conditions (37°C). Two groups of biodigesters were prepared. Each group consisted of 4 digesters. UEO was the main component in the first group of biodigesters with and without inoculum, whereby a mix of UEO and petroleum refinery oily sludge (ROS) was the component in the second group of biodigesters. The results revealed that for UEO-based biodigesters, maximum biogas production was 0.98, 1.23, 1.93, and 0 ml/g VS from UEO±CD, UEO±CM, UEO±PM, and U
... Show MoreExploring the antibacterial potential of neem oil (Azadirachta indica) in combination with gentamicin (GEN) against pathogenic molds, especially Pseudomonas aeruginosa, has drawn concern due to the quest for natural treatment options against incurable diseases. Prospective research directions include looking for natural cures for many of the currently incurable diseases available now. microbial identification system, were used to identify the isolates. The research utilized a range of methods, such as the diffusion agar well (AWD) assays, TEM (transmission electron microscopy) analysis, minimum inhibitory concentration (MIC) assays, and real-time PCR (RT-qPCR) to analyze bacterial expression and the antibacterial action of neem oil (Azadira
... Show MoreThis review examines how artificial intelligence (AI) including machine learning (ML), deep learning (DL), and the Internet of Things (IoT) is transforming operations across exploration, production, and refining in the Middle Eastern oil and gas sector. Using a systematic literature review approach, the study analyzes AI adoption in upstream, midstream, and downstream activities, with a focus on predictive maintenance, emission monitoring, and digital transformation. It identifies both opportunities and challenges in applying AI to achieve environmental and economic goals. Although adoption levels vary across the region, countries such as Saudi Arabia, the UAE, and Qatar are leading initiatives that align with global sustainability targets.
... Show MoreTo verify the influence of magnetic flux on the characteristics of SAE 10W-30 gasoline engine oil when the engine oil is exposed to different magnetic fluxes 0, 6, 9, and 13 Volt. The following oil characteristics were measured: viscosity at 40 and 100 °C, and total acid number (TAN) mg KOH/g. The research was carried out in a completely randomized design with three replications for each treatment under the 5% probability level to compare the means of the treatments. The results of the experiment showed that there were significant differences in the studied properties when the engine oil was exposed to the above magnetic fluxes and, inversely, especially the magnetic flux of 13 Volt, which led to a decrease in the viscosity of the oils at
... Show MoreKnowledge of the mineralogical composition of a petroleum reservoir's formation is crucial for the petrophysical evaluation of the reservoir. The Mishrif formation, which is prevalent in the Middle East, is renowned for its mineralogical complexity. Multi-mineral inversion, which combines multiple logs and inversions for multiple minerals at once, can make it easier to figure out what minerals are in the Mishrif Formation. This method could help identify minerals better and give more information about the minerals that make up the formation. In this study, an error model is used to find a link between the measurements of the tools and the petrophysical parameters. An error minimization procedure is subsequently applied to determine
... Show More
