Many oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different from one well to another, from the high-pressure-temperature reservoir to surface conditions. All these factors must be investigated on a case-by-case basis. Because the Halfaya oil field is still developing its petroleum sector, modelling, and forecasting the phase behavior and asphaltene precipitation is crucial. This work used crude oil bottom hole samples with an API of equal to 27 from a well in the Halfaya oil field/Nahr-Umr formation to create a thermodynamic model using Multiflash software. The data included the compositional analysis, the PVT data, and reservoir conditions. The thermodynamic model of asphaltene phase behavior was proposed using the Cubic-Plus association equation of state. All the screening techniques' results revealed the presence of an asphaltene precipitation issue (asphaltene unstable), which was confirmed by a thermodynamic fluid model. The aim of this paper is to predict the problem of asphaltene precipitation so that future proactive remedial methods can be developed to decrease the time and expense associated with it.
In this work we study the influence of the laser pulse energy and ablation time on the aluminum nanoparticles productivity during nanosecond laser ablation of bulk aluminum immersed in liquid.
Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 3-8 minutes using the 1064 nm wavelength of a Nd:YAG laser with energies of 300-500 mJ per pulse.The laser energy was varied between 300 and 500 mJ/pulse, whereas the ablation time was set to 5 minutes. UV-Visible absorption spectra was used for the characterization and comparison of products.
Atherosclerosis is the most common causes of vascular diseases and it is associated with a restriction in the lumen of blood vessels. So; the study of blood flow in arteries is very important to understand the relation between hemodynamic characteristics of blood flow and the occurrence of atherosclerosis.
looking for the physical factors and correlations that explain the phenomena of existence the atherosclerosis disease in the proximal site of LAD artery in some people rather than others is achieved in this study by analysis data from coronary angiography as well as estimating the blood velocity from coronary angiography scans without having a required data on velocity by using some mathematical equations and physical laws. Fif
... Show MoreIn this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity
... Show MoreIn this work, the photodetection performance of polyvinyl alcohol (PVA) nanofibers and its composite with yttrium oxide (Y2O3) at different concentrations (2.5, 5, 10) wt% are examined deposited on p-type Si with (111) orientation. Electrospinning technique was used to create nanofiber composites. Adding Y2O3 significantly impacts the PVA nanofibers where ultraviolet-visible (UV-Vis) spectroscopy optical absorption energy gap decreases with increased concentration (2.8, 2.6, and 2.3) eV. X-ray diffraction was used to investigate crystal structure, which is cubic structure. The chemical composition study was conducted using Fourier transform infrared spectroscopy (FTIR) spectra, which revealed the stretching vibrations related to the Y-O bon
... Show Morelar water heating systems with heat pipes of three diameter groups of 16, 22 and 28.5 mm. The first and third groups had evaporator lengths of 1150, 1300 and 1550 mm. The second group had an additional length of 1800 mm. all heat pipes were of fixed condenser length of 200 mm. Ethanol at 50% fill charge ratio of the evaporator volume was used as the heat pipes working fluid. Each heat pipe condenser section was inserted in a storage tank and the evaporator section inserted into an evacuated glass tube of the Owens- Illinois type. The combined heat pipe and evacuated glass tube form an active solar collector of a unique design.
The resulting ten solar water heating systems were tested outdoors under the meteorological conditions of Bag