Many oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different from one well to another, from the high-pressure-temperature reservoir to surface conditions. All these factors must be investigated on a case-by-case basis. Because the Halfaya oil field is still developing its petroleum sector, modelling, and forecasting the phase behavior and asphaltene precipitation is crucial. This work used crude oil bottom hole samples with an API of equal to 27 from a well in the Halfaya oil field/Nahr-Umr formation to create a thermodynamic model using Multiflash software. The data included the compositional analysis, the PVT data, and reservoir conditions. The thermodynamic model of asphaltene phase behavior was proposed using the Cubic-Plus association equation of state. All the screening techniques' results revealed the presence of an asphaltene precipitation issue (asphaltene unstable), which was confirmed by a thermodynamic fluid model. The aim of this paper is to predict the problem of asphaltene precipitation so that future proactive remedial methods can be developed to decrease the time and expense associated with it.
This research takes up address the practical side by taking case studies for construction projects that include the various Iraqi governorates, as it includes conducting a field survey to identify the impact of parametric costs on construction projects and compare them with what was reached during the analysis and the extent of their validity and accuracy, as well as adopting the approach of personal interviews to know the reality of the state of construction projects. The results showed, after comparing field data and its measurement in construction projects for the sectors (public and private), the correlation between the expected and actual cost change was (97.8%), and this means that the data can be adopted in the re
... Show MoreThis research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical
... Show MoreRecent population studies have shown that placenta accreta spectrum (PAS) disorders remain undiagnosed before delivery in half to two-thirds of cases. In a series from specialist diagnostic units in the USA, around one-third of cases of PAS disorders were not diagnosed during pregnancy. Maternal
Inherent fluctuations in the availability of energy from renewables, particularly solar, remain a substantial impediment to their widespread deployment worldwide. Employing phase-change materials (PCMs) as media, saving energy for later consumption, offers a promising solution for overcoming the problem. However, the heat conductivities of most PCMs are limited, which severely limits the energy storage potential of these materials. This study suggests employing circular fins with staggered distribution to achieve improved thermal response rates of PCM in a vertical triple-tube heat exchanger involving two opposite flow streams of the heat-transfer fluid (HTF). Since heat diffusion is not the same at various portions of the PCM unit,
... Show MoreNumerous tests are recently conducted to assess vibration's role in accelerating the heat transfer rate in various heat exchangers. In this work, the enhancement of heat transfer by the effect of transfer vibration and inclination angles on the surface of a double pipe heat exchanger experimentally has been investigated. A data acquisition system is applied to record the data of temperatures, flow rates, and frequencies over the tests. A compound technique was adopted, including the application of a set of inclination angles of (0°, 10°, 20°, and 30°) under the effect of frequency of vibration ranging from sub-resonance to over-resonance frequencies. The results showed that the overall heat transfer coefficient enhan
... Show MoreIn this work, using GPS which has best accuracy that can be established set of GCPs, also two satellite images can be used, first with high resolution QuickBird, and second has low resolution Landsat image and topographic maps with 1:100,000 and 1:250,000 scales. The implementing of these factors (GPS, two satellite images, different scales for topographic maps, and set of GCPs) can be applying. In this study, must be divided this work into two parts geometric accuracy and informative accuracy investigation. The first part is showing geometric correction for two satellite images and maps.
The second part of the results is to demonstrate the features (how the features appearance) of topographic map or pictorial map (image map), Where i
The nuclear ground-state structure of some Nickel (58-66Ni) isotopes has been investigated within the framework of the mean field approach using the self-consist Hartree-Fock calculations (HF) including the effective interactions of Skyrme. The Skyrme parameterizations SKM, SKM*, SI, SIII, SKO, SKE, SLY4, SKxs15, SKxs20 and SKxs25 have been utilized with HF method to study the nuclear ground state charge, mass, neutron and proton densities with the corresponding root mean square radii, charge form factors, binding energies and neutron skin thickness. The deduced results led to specifying one set or more of Skyrme parameterizations that used to achieve the best agreement with the available experimental
... Show MoreMauddud Formation (Albian stage-the Early Cretaceous) is an important oil reservoir in Ratawi field of southern Iraq. Four wells, R T-2, R T-3, R T-6, and R T-7, located 70 km northwest of Basra, were selected to study microfacies properties and petrophysical associations with the probability of oil production. Seventy-seven core samples are collected, and thin sections for petrographic analysis. The self-potential, Gamma-ray, resistivity, and porosity logs are used to determine the top and bottom of the Mauddud Formation. Water saturation of the invaded and uninvaded zones, shale volume, and porosity were calculated. The study area results showed that the quantity of shale is less than 15% for most of the wells, and the dominant po
... Show MoreA total of 200 clinical samples included Burns and Wounds infections were collected from Baghdad Governorate. Results showed that rate all isolates of P. mirabilis was 31(15.5%) and rate of Burns infections was 14 (45%) and rate of wounds infection 17 (55%). Where was diagnostic based on conventional biochemical tests and confirmed by the Vitek-2 Compact system and the specific primer of the16SrRNA gene, the ability of bacterial isolates to biofilm formation to be studied. It's considered an important virulence factor in Incidence of diseases and play important role in increasing resistance to antibiotic of encased bacteria, by two methods Congo Red Agar method and Microtiter Plate method. The Congo Red Agar method showed that most isolates
... Show More