Stuck pipe is a prevalent and costly issue in drilling operations, with the potential to cost the petroleum industry billions of dollars annually. To reduce the likelihood of this issue, efforts have been made to identify the causes of stuck pipes. The main mechanisms that cause stuck pipes include drill cutting of the formation, inappropriate hole-cleaning, wellbore instability, and differential sticking forces, particularly in highly deviated wellbores. The significant consequences of a stuck pipe include an increase in well costs and Non-Productive Time (NPT), and in the worst-case scenario, the loss of a wellbore section and down-hole equipment, or the need to sidetrack, plug, or abandon the well. This paper provides a comprehensive review of the challenges associated with pipe sticking during drilling operations. The mechanisms of pipe sticking, analysis of differential sticking factors, guiding principles to minimize differential sticking, diagnosis approaches, and different treatment methods are discussed. This paper can serve as a guide for any problem involving stuck pipes in the petroleum industry.
In this work, a novel biocatalytic process for the production of 7-methylxanthines from theobromine, an economic feedstock has been developed. Bench scale production of 7-methlxanthine has been demonstrated. The biocatalytic process used in this work operates at 30 OC and atmospheric pressure, and is environmentally friendly. The biocatalyst was E. coli BL21(DE3) engineered with ndmB/D genes combinations. These modifications enabled specific N7- demethylation of theobromine to 7-methylxanthine. This production process consists of uniform fermentation conditions with a specific metabolically engineered strain, uniform induction of specific enzymes for 7-methylxanthine production, uniform recovery an
... Show MoreThe study aims to evaluate the removal of sulfur content from Iraqi light naphtha produced in Al-Dora refinery by adsorption desulfurization DS technique using modified activated carbon MAC loaded with nickel Ni and copper Cu as single binary metals. The experiments were carried in a batch unit with various operating parameters; MAC dosage, agitation speed, and a contact time of 300 min at constant initial sulfur concentration 155 ppm and temperature. The results showed higher DS% by AC/Ni-Cu (66.45)% at 500 rpm and 1 g dosage than DS (29.03)% by activated carbon AC, increasing MAC dosage, agitation speed, and contact time led to increasing DS% values. The adsorption capacity of MAC results was recorded (16, 15, and 20) mg sulfu
... Show MoreIndustrial wastewater containing nickel, lead, and copper can be produced by many industries. The reverse osmosis (RO) membrane technologies are very efficient for the treatment of industrial wastewater containing nickel, lead, and copper ions to reduce water consumption and preserving the environment. Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50 to 200 ppm), pressures (1 to 4 bar), temperatures (10 to 40 oC), pH (2 to 5.5), and flow rates (10 to 40 L/hr), were prepared and subjected to treatment by RO system in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98.5%, 97.5% and 96% for Ni(II),
... Show MoreThere are still areas around the world suffer from severe shortage of freshwater supplies. Desalination technologies are not widely used due to their high energy usage, cost, and environmental damaging effects. In this study, a mathematical model of single-bed adsorption desalination system using silica gel-water as working pair is developed and validated via earlier experiments. A very good match between the model predictions and the experimental results is recorded. The objective is to reveal the factors affecting the productivity of fresh water and cooling effect in the solar adsorption system. The proposed model is setup for solving within the commercially-available software (Engineering Equation Solver). It is implemented to so
... Show MoreThis study is aimed to use the aerobic packed bed in biotreatment of the wastewater which is discharge from AL-KARAMA teaching hospital in Baghdad. The performance of packed-bed treatment method was examined for elimination of the organic compounds from wastewater under aerobic conditions. In this research different parameters were studied. They were: inoculums concentration, circulation rate of wastewater through the bed, packing type and the temperature. Results showed that the system efficiently removed about 82% of the chemical oxygen demand (COD) and 80% of the Biological oxygen demand (BOD). Percent reduction in turbidity was about 92% and reduction in nitrate concentration was about 87%. It was found that best performance of the pack
... Show MoreLittoral and benthic invertebrates from Roundwood Reservoir System were sampled. Oligochaetes and molluscs were the dominant organisms in the littoral and benthic areas Trichopterans and chironomids were the most abundant insect groups. Scuba diving samples reinforced that view. Other groups of macroinvertebrates were poorly represented. Vertical and horizontal hauls of zooplankton revealed that there were twelve species of zooplankton present. Daphnia hyalina Leydig and Bosmina coregoni Baird were the two dominant species.
BACKGROUND: Color Vision Deficiency (CVD) is mostly an inherited trait and is not an uncommon problem. Prevalence of CVD differs among different ethnic and geographic properties of the population that affect their genetic constitution. Ishihara plates remain an internationally accepted tool for screening red-green CVD. OBJECTIVE: To determine the prevalence of red-green CVD among adult males from Baghdad province. PATIENTS AND METHODS: One thousand and five (1005) adult males were enrolled in this study, using a systematic sampling technique, and were screened for CVD utilizing 24-plate Ishihara plates and re-tested by EnChroma 39-Color plates. All males were residing in Baghdad and the center of Iraq. RESULTS: Among all tested males, 948 r
... Show MoreRandom throwing of industrial waste has a significant impact on the environment unless it takes into account the conditions of engineered destroying and/or re-used. Taking the advantage of re-using waste materials in engineering projects represents a well-planned project in order to resolve a lot of engineering problems for some difficult soils. The objective of this study was to evaluate the capability and effects of Rubber Shreds (RS) from scrap torn belts towards improving the shear strength of soft clay. A direct shear tests were conducted on soft clay-RS mixture. The following parameters were investigated to study the influence of RS content, water content, normal stress, and dilation ratio. From experimental test results it was fou
... Show MoreIn this research, the effect of multi-walled carbon nanotubes (MWCNTs) on the alumina/chromia (Al2O3/Cr2O3) nanocomposites has been investigated. Al2O3/Cr2O3-MWCNTs nanocomposites with variable contents of Cr2O3 and MWCNTs were fabricated using coprecipitation process and followed by spark plasma sintering. XRD analysis revealed a good crystallinity of sintered nanocomposites samples and there was only one phase presence of Al2O3-Cr2O3 solid solution. Density, Vickers microhardness, fracture toughness and fracture strength have been measured in the sintered samples. The results show tha
... Show More