Preferred Language
Articles
/
ijcpe-929
Swab – Surge Pressure Investigation, and the Influence Factors, Prediction and Calculation (Review)
...Show More Authors

Surge pressure is supplemental pressure because of the movement of the pipes downward and the swab pressure is the pressure reduction as a result of the drill string's upward movement. Bottom hole pressure is reduced because of swabbing influence. An Investigation showed that the surge pressure has great importance for the circulation loss problem produced by unstable processes in the management pressure drilling (MPD) actions. Through Trip Margin there is an increase in the hydrostatic pressure of mud that compensates for the reduction of bottom pressure due to stop pumping and/or swabbing effect while pulling the pipe out of the hole. This overview shows suggested mathematical/numerical models for simulating surge pressure problems inside the wellbore with adjustable cross-section parts. The developed models require simple input data that may be gotten from the rig location. Pressure variations due to Swabs and surge has been a major concern in the oil industry for numerous years. If the pressure variations become moreover extraordinary, this leads to formation fracture, and formation influx principal to a kick. In the worst circumstances and situations that kick principal on the blowout and put crew life in hazard. By using theoretical investigation and experimental consequences, it established that the surge pressure is a function of the well depth, the drilling tools combination, the diameter of the wellbore, drilling mud properties, drilling pipe operation speed, and acceleration of the drill pipe movement, etc. This review focuses and investigates the essential theory and on software that computes the pressure variations in different flow conditions to predict surge and swab pressure values.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 30 2014
Journal Name
Al-kindy College Medical Journal
Unstable Angina /Non ST Elevation Myocardial Infarction: Frequency of Conventional Risk Factors; TIMI Risk Score, and Their Impact On Angiographic Data
...Show More Authors

Background: Appreciation of the crucial role of risk factors in the development of coronary artery disease (CAD) is one of the most significant advances in the understanding of this important disease. Extensive epidemiological research has established cigarette smoking, diabetes, hyperlipidemia, and hypertension as independent risk factors for CADObjective: To determine the prevalence of the 4 conventional risk factors(cigarette smoking, diabetes, hyperlipidemia, and hypertension) among patients with CAD and to determine the correlation of Thrombolysis in Myocardial Infarction (TIMI) risk score with the extent of coronary artery disease (CAD) in patients with unstable angina /non ST elevation myocardial infarction (UA/NSTEMI).Methods: We

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 01 2024
Journal Name
Chemical Engineering Research And Design
Treatment of petroleum refinery wastewater by a combination of anodic oxidation with photocatalyst process: Recent advances, affecting factors and future perspectives
...Show More Authors

View Publication
Scopus (10)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien

... Show More
Publication Date
Mon Jan 01 2018
Journal Name
Communications In Computer And Information Science
Automatically Recognizing Emotions in Text Using Prediction by Partial Matching (PPM) Text Compression Method
...Show More Authors

In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo

... Show More
View Publication
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Nov 01 2023
Journal Name
Journal Of King Saud University - Engineering Sciences
Particle swarm optimization technique-based prediction of peak ground acceleration of Iraq’s tectonic regions
...Show More Authors

Peak ground acceleration (PGA) is one of the critical factors that affect the determination of earthquake intensity. PGA is generally utilized to describe ground motion in a particular zone and is able to efficiently predict the parameters of site ground motion for the design of engineering structures. Therefore, novel models are developed to forecast PGA in the case of the Iraqi database, which utilizes the particle swarm optimization (PSO) approach. A data set of 187 historical ground-motion recordings in Iraq’s tectonic regions was used to build the explicit proposed models. The proposed PGA models relate to different seismic parameters, including the magnitude of the earthquake (Mw), average shear-wave velocity (VS30), focal depth (FD

... Show More
View Publication Preview PDF
Scopus (21)
Crossref (5)
Scopus Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Engineering
A Proposed Adaptive Bitrate Scheme Based on Bandwidth Prediction Algorithm for Smoothly Video Streaming
...Show More Authors

A robust video-bitrate adaptive scheme at client-aspect plays a significant role in keeping a good quality of video streaming technology experience. Video quality affects the amount of time the video has turned off playing due to the unfilled buffer state. Therefore to maintain a video streaming continuously with smooth bandwidth fluctuation, a video buffer structure based on adapting the video bitrate is considered in this work. Initially, the video buffer structure is formulated as an optimal control-theoretic problem that combines both video bitrate and video buffer feedback signals. While protecting the video buffer occupancy from exceeding the limited operating level can provide continuous video str

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed May 03 2023
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Enhancing smart home energy efficiency through accurate load prediction using deep convolutional neural networks
...Show More Authors

The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par

... Show More
View Publication
Crossref
Publication Date
Tue Oct 01 2019
Journal Name
2019 12th International Conference On Developments In Esystems Engineering (dese)
Roadway Deterioration Prediction Using Markov Chain Modeling (Wasit Governorate/ Iraq as a Case Study)
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Dec 23 2011
Journal Name
International Journal Of The Physical Sciences
Fast prediction of power transfer stability index based on radial basis function neural network
...Show More Authors

View Publication
Scopus (16)
Crossref (4)
Scopus Crossref
Publication Date
Mon Aug 01 2016
Journal Name
Journal Of Engineering
Prediction of Monthly Fluoride Content in Tigris River using SARIMA Model in R Software
...Show More Authors

The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2, 0, 0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlat

... Show More
View Publication Preview PDF