In many oil-recovery systems, relative permeabilities (kr) are essential flow factors that affect fluid dispersion and output from petroleum resources. Traditionally, taking rock samples from the reservoir and performing suitable laboratory studies is required to get these crucial reservoir properties. Despite the fact that kr is a function of fluid saturation, it is now well established that pore shape and distribution, absolute permeability, wettability, interfacial tension (IFT), and saturation history all influence kr values. These rock/fluid characteristics vary greatly from one reservoir region to the next, and it would be impossible to make kr measurements in all of them. The unsteady-state approach was used to calculate the relative permeability of five carbonate for core plugs from the Mishrif formation of WQ1. The relative permeability calculated by using Johnson, Bossler and Naumann (JBN) Correlation, which is, consider one of the unsteady-state approach where it found that the core plugs are water wet. A normalizing approach has been used to remove the effect of irreducible water and residual saturations, which would vary according on the environment. Based on their own irreducible water and trapped saturations, the relative permeabilities can subsequently be de-normalized and assigned to distinct sections (rock types) of the reservoir. The goal of this research is to normalize the relative permeability that was determined through water flooding.
In the era of the digital economy, public organizations need to consolidation the capabilities of entrepreneurial alertness to reduce the risks of sudden transformations and changes, and to find effective mechanisms to discover and invest in environmental opportunities proactively, as this concern has become a knowledge gap in public sector institutions, the current research aims to identify the role of digital competence in influencing on entrepreneurial alertness in the Central Bank of Iraq (CBI), the descriptive analytical approach was used as a research method to describe and analyze the main research variables. digital competence as an explanatory variable includes three dimensions: digital infrastructure, digital integration, and d
... Show MoreExcessive intake of fluoride, mainly through drinking water is a serious health hazard affecting humans worldwide. In this study, the defluoridation capacities of locally available raw waste beef bones have been estimated. Several experimental parameters including contact time, pH, bone dose, fluoride initial concentration, bone grains size, agitation rate, and the effect of co-existence of anions in actual samples of wastewater were studied for fluoride removal from aqueous solutions. Results indicated excellent fluoride removal effeciency up to 99.7% at fluoride initial concentration of 10 mg F/L and 120 min contact time. Maximum fluoride uptake was obtained at neutral pH range 6-7. Fluoride removal kinetic was well described by the ps
... Show MoreWater pollution as a result of contamination with dye-contaminating effluents is a severe issue for water reservoirs, which instigated the study of biodegradation of Reactive Red 195 and Reactive Blue dyes by E. coli and Bacillus sp. The effects of occupation time, solution pH, initial dyes concentrations, biomass loading, and temperature were investigated via batch-system experiments by using the Design of Experiment (DOE) for 2 levels and 5 factors response surface methodology (RSM). The operational conditions used for these factors were optimized using quadratic techniques by reducing the number of experiments. The results revealed that the two types of bacteria had a powerful effect on biodegradable dyes. The regression analysis reveale
... Show MoreIn this research, the preparation of a chemically activated carbon from date stones by using electric and microwave assisted K2CO3 activation was studied. The effect of radiation power, radiation time, and impregnation ratio on the yield and Iodine number on the activated carbons was investigated. The activated carbon characterizations were examined by its surface area, pore structure analysis, bulk density, moisture content, ash content, iodine number, FTIR, and scanning electron microscopy (SEM). The adsorption capacity was also studied by adsorption of fluoroquinolones antibiotics, CIP, NOR, and LEVO, by the prepared activated carbon.
... Show MoreBackground: Abdominoplasty is one of the commonest surgical procedures that performed for those patients who had skin laxity, strive and muscle rectur diastasis. Combined using of liposuction and abdominoplasty it can give better result than traditional abdominoplasty with fear complications. Patient and Method: A total number of 25 female patients with age ranging between 27-55 years were underwent lipoabdominoplasty. With extensive liposuction of abdominal wall and selective undermining together with muscle plication. All of our patients had body mass index more than 30. Patients satisfaction and complication were documented postoperatively. Result: All of our patients had no Major complications and the postoperative period passed unevent
... Show MoreCommercial graphite (CGT) powder was used as an adsorbent surface for cationic dye, Janus green (JG), from aqueous solutions. This study aims to highlight the practical significance of using inexpensive CGT as an efficient adsorbent for the removal of JG dye from industrial wastewater. CGT was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction. The adsorption process was investigated by examining parameters like the weight of the adsorbent, contact time, and temperature. Pseudo-second-order kinetic (PSO), pseudo-first-order, and intraparticle diffusion were used for analyzing the kinetic data. JG dye's adsorption kinetics fit the PSO kinetic model well (R2= 0.999). Furthermo
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreBall and Plate (B&P) system is a benchmark system in the control engineering field that has been used to verify many control methods. In this paper the design of a sliding mode . controller has been investigated and verified in real-time via implementation on a real ball and plate system hardware. The mathematical model has been derived and the necessary parameters have been measured. The sliding mode controller has been designed based on the obtained mathematical model. The resulting controller has been implemented using the Arduino Mega 2560 and a ball and plate system built completely from scratch. The Arduino has been programmed by the Arduino support target for Simulink. Three test signals has been used for verification purposes
... Show MoreAbstract
Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.