Reservoir characterization plays a crucial role in comprehending the distribution of formation properties and fluids within heterogeneous reservoirs. This knowledge is instrumental in constructing an accurate three-dimensional model of the reservoir, facilitating predictions regarding porosity, permeability, and fluid flow distribution. Among the various methods employed for reservoir characterization, the hydraulic flow unit stands out as a widely adopted approach. By effectively subdividing the reservoir into distinct zones, each characterized by unique petrophysical and geological properties, hydraulic flow units enable comprehensive reservoir analysis. The concept of the flow unit is closely tied to the flow zone indicator, a critical parameter that defines the porosity-permeability relationships of each hydraulic flow unit. Additionally, the flow zone indicator method proves valuable in estimating permeability accurately. In this study, we demonstrate the application of the flow zone indicator method to determine hydraulic flow units within the Khasib formation. By analyzing core data and calculating the Rock Quality Index (RQI) and Flow Zone Indicator (∅Z), we differentiate the formation into four hydraulic flow units based on FZI values. Specifically, HFU 1 represents a rock of poor quality, corresponding to compact and chalky limestone. HFU 2 represents intermediate quality, corresponding to argillaceous limestone, while HFU 3 represents good quality, corresponding to porous limestone. Lastly, HFU 4 signifies an excellent reservoir rock quality characterized by vuggy limestone. By establishing a permeability equation that correlates with effective porosity for each rock type, we successfully estimate permeability. Comparing these estimated permeability values with core permeability reveals a strong agreement with a high correlation coefficient of 0.96%. Consequently, the flow zone indicator method effectively classifies the Khasib formation into four distinct hydraulic flow units and provides an accurate and reliable means of determining permeability in the reservoir. The resulting permeability equations can be applied to wells and depth intervals lacking core measurements, further emphasizing the practical utility of the FZI method.
Background: Dolutegravir sodium (DTG), used to treat HIV, faces challenges in delivering effective therapeutic concentrations to the brain due to the blood-brain barrier (BBB). Nanostructured lipid carriers (NLCs) combined with in situ gels present a promising strategy for enhancing brain drug delivery via the intranasal route. Objective: To compare brain pharmacokinetics of DTGs delivered via NLC-loaded in situ gel intranasal administration with the conventional intravenous (IV) drug solution. Methods: 80 Wistar rats, which were divided into three groups: two groups consisting of 39 animals each and a control group with 2 animals. Rats were administered with a dose of 1.0 mg/kg of DTGs IV, and DTGs NLC-loaded in situ gel were admin
... Show MoreResin-modified glass ionomer cement tends to shrink due to polymerization of the resin component. Additionally, they are more prone to syneresis and imbibition during the setting process. This
The study was carried out to determine the cytotoxic, antioxidant and gastro-protective effect of ethyl-4-[(3,5-di-tert-butyl-2-hydroxybenzylid ene)amino] benzoate (ETHAB) in rats.
Most companies use social media data for business. Sentiment analysis automatically gathers analyses and summarizes this type of data. Managing unstructured social media data is difficult. Noisy data is a challenge to sentiment analysis. Since over 50% of the sentiment analysis process is data pre-processing, processing big social media data is challenging too. If pre-processing is carried out correctly, data accuracy may improve. Also, sentiment analysis workflow is highly dependent. Because no pre-processing technique works well in all situations or with all data sources, choosing the most important ones is crucial. Prioritization is an excellent technique for choosing the most important ones. As one of many Multi-Criteria Decision Mak
... Show MoreThe Atoms in Molecules (AIM) analysis for triosmium cluster, which contains trihydridede, carbon, carbonyl and 2-methylbenzothiazolide ligands, [Os3(µ-H)3(µ3-ɳ2-CC7H3(2-CH3)NS)(CO)8] is reported. Bonding features in this cluster has been analyzed based on QTAIM ("Quantum Theory of Atoms in Molecules") in this work. The topological indices derived from electron density of relevant interactions in triosmium compound have been studied. The major interesting point of the AIM analyses is that the core of part (Os3H3) reveals the absence of any critical points and bond paths connecting any pairs of O
... Show More