The study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed and solved with the experimentally obtained kinetics data to evaluate reaction rate constants versus temperature, pre-exponential factors, and activation energy values for the forward and the backward esterification reactions. The activation energies were 34.863 kJ/mol for the forward reaction and 29.731 kJ/mol for the backward reaction. The thermodynamics of the activation step of the forward and reverse reactions was studied based on the hypothesis of forming a complex material that decomposes into a product. The activation steps were studied using Eyring bimolecular collision theory approach, and both ΔH* and ΔS* were determined for forward and backward esterification reactions. The enthalpies of activation were 32.141 kJ/mol and 27.080 kJ/mol for the forward reaction and the backward reaction, and the entropies of activation were - 193.7 and -212.7 J/mol. K for the forward reaction and the backward reaction, respectively.
A competitive adsorption of Cu2+, Ni2+, and Cd2+ ions from a synthetic wastewater onto nanomaterial was studied.(Fe3O4) nanoparticles obtained from US Research Nanomaterials, Inc., Houston, TX 77084, (USA), was used as nanosorbent. Experimental parameters included pH, initial metal concentrations, and temperature were studied for nanosorbent. The uptake capacity 11.5, 6.07 and 11.1 mg/g for Cu2+, Ni2+and Cd2+, respectively, onto nanosorbent . The optimum pH values was 6 and the contact time was 50 min. for Cu2+, Ni2+and Cd2+, respectively. The equilibrium isotherm for
... Show MoreOily wastewater is one of the most challenging streams to deal with especially if the oil exists in emulsified form. In this study, electrospinning method was used to prepare nanofiberous polyvinylidene fluoride (PVDF) membranes and study their performance in oil removal. Graphene particles were embedded in the electrospun PVDF membrane to enhance the efficiency of the membranes. The prepared membranes were characterized using a scanning electron microscopy (SEM) to verify the graphene stabilization on the surface of the membrane homogeneously; while FTIR was used to detect the functional groups on the membrane surface. The membrane wettability was assessed by measuring the contact angle. The PVDF and PVDF / Graphene membranes efficiency
... Show MoreThe objective of the conventional well testing technique is to evaluate well- reservoir interaction through determining the flow capacity and well potential on a short-term basis by relying on the transient pressure response methodology. The well testing analysis is a major input to the reservoir simulation model to validate the near wellbore characteristics and update the variables that are normally function of time such as skin, permeability and productivity multipliers.
Well test analysis models are normally built on analytical approaches with fundamental physical of homogenous media with line source solution. Many developments in the last decade were made to increase the resolution of transient response derivation to meet the
... Show Morehe Orthogonal Frequency Division Multiplexing is a promising technology for the Next Generation Networks. This technique was selected because of the flexibility for the various parameters, high spectral efficiency, and immunity to ISI. The OFDM technique suffers from significant digital signal processing, especially inside the Inverse/ Fast Fourier Transform IFFT/FFT. This part is used to perform the orthogonality/De-orthogonality between the subcarriers which the important part of the OFDM system. Therefore, it is important to understand the parameter effects on the increase or to decrease the FPGA power consumption for the IFFT/FFT. This thesis is focusing on the FPGA power consumption of the IFFT/FFT uses in the OFDM system. This researc
... Show MoreIn this study, a platinum(II) complex ([Pt(H2L)(PPh3)] complex) containing a thiocarbohydrazone as the ligand was tested as an anti-proliferative agent against ovarian adenocarcinoma (Caov-3) and human colorectal adenocarcinoma (HT-29) through MTT assays. Apoptotic markers were tested by the AO/PI double staining assay and DNA fragmentation test. Flow cytometry was conducted to measure cell cycle distribution, while the p53 and caspase-8 pathways were tested via immunofluorescence assay. Results demonstrated that the cytotoxic effect of the Pt(II)- thiocarbohydrazone complexes against Caov-3 and HT-29 cells was highly significant, and this effect triggered the activation of the p53 and caspase-8 pathways. Besides, apoptosis stimulated by th
... Show More
