The study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed and solved with the experimentally obtained kinetics data to evaluate reaction rate constants versus temperature, pre-exponential factors, and activation energy values for the forward and the backward esterification reactions. The activation energies were 34.863 kJ/mol for the forward reaction and 29.731 kJ/mol for the backward reaction. The thermodynamics of the activation step of the forward and reverse reactions was studied based on the hypothesis of forming a complex material that decomposes into a product. The activation steps were studied using Eyring bimolecular collision theory approach, and both ΔH* and ΔS* were determined for forward and backward esterification reactions. The enthalpies of activation were 32.141 kJ/mol and 27.080 kJ/mol for the forward reaction and the backward reaction, and the entropies of activation were - 193.7 and -212.7 J/mol. K for the forward reaction and the backward reaction, respectively.
The possibility of using zero-valent iron as permeable reactive barrier in removing lead from a contaminated groundwater was investigated. In the batch tests, the effects of many parameters such as contact time between adsorbate and adsorbent (0-240 min), initial pH of the solution (4-8), sorbent dosage (1-12 g/100 mL), initial metal concentration (50-250 mg/L), and agitation speed
(0-250 rpm) were studied. The results proved that the best values of these parameters achieve the maximum removal efficiency of Pb+2 (=97%) were 2 hr, 5, 5 g/100 mL, 50 mg/L and 200 rpm respectively. The sorption data of Pb+2 ions on the zero-valent iron have been performed well by Langmuir isotherm model in compared with Freundlich model under the studied
In the present work advanced oxidation process, photo-Fenton (UV/H2O2/Fe+2) system, for the treatment of wastewater contaminated with oil was investigated. The reaction was influenced by the input concentration of hydrogen peroxide H2O2, the initial amount of the iron catalyst Fe+2, pH, temperature and the concentration of oil in the wastewater. The removal efficiency for the system UV/ H2O2/Fe+2 at the optimal conditions and dosage (H2O2 = 400mg/L, Fe+2 = 40mg/L, pH=3, temperature =30o C) for 1000mg/L load was found to be 72%.
The removal of chlorpyrifos pesticide from aqueous solutions was achieved by adsorption using low cost agricultural residue as adsorbent surface; barley husks. Several variables that affect the adsorption were studied including contact time, adsorbent weight, pH, ionic strength, particle size and temperature. The absorbance of the solution before and after adsorption was measured by using UV-Visible spectrophotometer. The equilibrium data was suitable with Langmuir model of adsorption and the linear regression coefficient R2 = 0.9785 at 37.5°C was used to knowledge the best fitting isotherm model. The general shape of the adsorption isotherm of chlorpyrifos on barley husks consistent with (H3-type) on the Giles classification. Several
... Show MoreThis study focused on treating wastewater to remove phosphorus by adsorption onto naturaland local materials. Burned kaolin, porcelinite, bauxite and limestone were selected to be testedas adsorption materials.The adsorption isotherms were evaluated by batch experiments, studyingthe effects of pH, temperature and initial phosphorus concentration. The results showed that at pH6, temperature 20°C and 300 mg/l initial phosphorus concentration; the sorption capacity was0.61, 9, 10 and 13 mg/g at 10 h contact time, for burned kaolin, porcelanite, limestone and bauxiterespectively. As the pH increased from 2 to 10 the removal efficiency for the materials differs inbehaviour. The removal efficiency increased from 40 to 90 % for limestone, and dec
... Show MoreThe removal of boron from aqueous solution was carried out by electrocoagulation (EC) using magnesium electrodes as anode and stainless steel electrodes as cathode. Several operating parameters on the removal efficiency of boron were investigated, such as initial pH, current density, initial boron ion concentration, NaCl concentration, spacing between electrodes, electrode material, and presence of carbonate concentration. The optimum removal efficiency of 91. 5 % was achieved at a current density of 3 mA/cm² and pH = 7 using (Mg/St. St. ) electrodes, within 45 min of operating time. The concentration of NaCl was o. 1 g/l with a 0.5cm spacing between the electrodes. First and second order rate equation were applied to study adsorp
... Show MoreIn the present study, a low cost adsorbent is developed from the naturally available sawdust
which is biodegradable. The removal capacity of chromium(VI) from the synthetically prepared
industrial effluent of electroplating and tannery industrial is obtained.
Two modes of operation are used, batch mode and fixed bed mode. In batch experiment the
effect of Sawdust dose (4- 24g/L) with constant initial chromium(VI) concentration of 50 mg/L and
constant particle size less than1.8 mm were studied.
Batch kinetics experiments showed that the adsorption rate of chromium(VI) ion by Sawdust
was rapid and reached equilibrium within 120 min. The three models (Freundlich, Langmuir and
Freundlich-Langmuir) were fitted to exper
The degradation and mineralization of 4-chlorophenol (4-CP) by advanced oxidation processes (AOPs) was investigated in this work, using both of UV/H2O2 and photo-Fenton UV/H2O2/Fe+3 systems.The reaction was influenced by the input concentration of H2O2, the amount of the iron catalyst, the type of iron salt, the pH and the concentration of 4-CP. A colored solution of benzoquinon can be observed through the first 5 minutes of irradiation time for UV/H2O2 system when low concentration (0.01mol/L) of H2O2 was used. The colored solution of benzoquinon could also be observed through the first 5 minutes for the UV/H2O2/Fe+3 system at high
concentration (100ppm) of 4-CP. The results have shown that adding Fe+3 to the UV/H2O2 system enhanced
Biosorption of cadmium ions from simulated wastewater using rice husk was studied with initial concentration of 25 mg/l. Equilibrium isotherm was studied using Langmuir, Freundlich, BET and Timken models. The results show that the Freundlich isotherm is the best fit model to describe this process with high determination coefficient equals to 0.983. There was a good compliance between the experimental and theoretical results. Highest removal efficiency 97% was obtained at 2.5g of adsorbent, pH 6 and contact time 100 min.
The adsorption behavior of methyl orange from aqueous solution on Iraqi bentonite was investigated. The effects of various parameters such as initial concentration of methyl orange, amount of adsorbent, ionic strength and temperature on the adsorption capacity has been studied. The percentage removal of methyl orange increased with the decrease of initial concentration of methyl orange and it increased with the increase of dose of adsorbent. The adsorbed amount of methyl orange decrease with increasing ionic strength and an increase in temperature. The equilibrium adsorption isotherms have been analysed by the linear, Langmuir and Temkin models. The Langmuir isotherms have the highest correlation coefficients. Thermodynamic paramet
... Show More