The study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed and solved with the experimentally obtained kinetics data to evaluate reaction rate constants versus temperature, pre-exponential factors, and activation energy values for the forward and the backward esterification reactions. The activation energies were 34.863 kJ/mol for the forward reaction and 29.731 kJ/mol for the backward reaction. The thermodynamics of the activation step of the forward and reverse reactions was studied based on the hypothesis of forming a complex material that decomposes into a product. The activation steps were studied using Eyring bimolecular collision theory approach, and both ΔH* and ΔS* were determined for forward and backward esterification reactions. The enthalpies of activation were 32.141 kJ/mol and 27.080 kJ/mol for the forward reaction and the backward reaction, and the entropies of activation were - 193.7 and -212.7 J/mol. K for the forward reaction and the backward reaction, respectively.
Milling Machining is a widely accepted nontraditional machining technique used to produce parts with complex shapes and configurations. The material is removed in two stages roughing and finishing, the flat end cutter removed the unwanted part of material, then finished by end mill cutter. In milling technique, the role of machining factors such as cutting depth, spindle speed and feed has been studied using Taguchi technique to find its effectiveness on surface roughness. Practical procedure is done by Taguchi Standard matrix. CNC milling is the most conventional process which is used for removing of material from workpiece to perform the needed shapes. The results and relations indicate that the rate of feed is v
... Show MoreDiscrete Krawtchouk polynomials are widely utilized in different fields for their remarkable characteristics, specifically, the localization property. Discrete orthogonal moments are utilized as a feature descriptor for images and video frames in computer vision applications. In this paper, we present a new method for computing discrete Krawtchouk polynomial coefficients swiftly and efficiently. The presented method proposes a new initial value that does not tend to be zero as the polynomial size increases. In addition, a combination of the existing recurrence relations is presented which are in the n- and x-directions. The utilized recurrence relations are developed to reduce the computational cost. The proposed method computes app
... Show MoreAgInSe2 (AIS) thin films solar cell involving of n-type AgInSe2 and Si of p-type substrate by using thermal evaporation method. The influence of annealing of the preparation AgInSe2 were considered to find the best properties of solar device. Thin film AIS have been deposited under the vacuum of 1.5*10-6 Torr with (400) nm thickness at R.T and annealing temperatures (473,573) K. Polycrystalline tetragonal structure for AIS thin films from XRD and increasing of surface roughness from AFM, energy gap values decreasing with increasing annealing temperatures, all films were negative type, I-V characteristics show increasing of efficiency with increasing of annealing temperatures.
Leishmaniasis is a widespread parasitic disease caused by Leishmania parasite, this disease considers a major health problem among worldwide. Treatments available are expensive or with cytotoxic side effect. This study was aimed to investigate the effect of an herbal new compound, called artemisinin, derived from a Chinese plant called Artemisia annua. Various concentrations were studied in vitro against L. tropica amastigotes by chamber counting to investigate its effect on the proliferation of promastigotes. Three incubation periods were adopted (24, 48, 72) hours. The results showed a significant decrease in surviving promastigotes, in parallel with the normal parasite count of untreated promastigotes, along the periods studied. This stu
... Show MoreSolar module operating temperature is the second major factor affects the performance of solar photovoltaic panels after the amount of solar radiation. This paper presents a performance comparison of mono-crystalline Silicon (mc-Si), poly-crystalline Silicon (pc-Si), amorphous Silicon (a-Si) and Cupper Indium Gallium di-selenide (CIGS) photovoltaic technologies under Climate Conditions of Baghdad city. Temperature influence on the solar modules electric output parameters was investigated experimentally and their temperature coefficients was calculated. These temperature coefficients are important for all systems design and sizing. The experimental results revealed that the pc-Si module showed a decrease in open circuit v
... Show MoreNanoparticles have gained considerable interest in recent times for oil recovery purposes owing to significant capabilities in wettability alteration of reservoir rocks. Wettability is a key factor controlling displacement efficiency and ultimate recovery of oil. The present study investigates the influence of zirconium (IV) oxide (ZrO2) and nickel (II) oxide (NiO) nanoparticles on the wetting preference of fractured (oil-wet) limestone formations. Wettability was assessed through SEM, AFM and contact angle. The potentials of the nanoparticles to alter oil-wet calcite substrates water wet, was experimentally tested at low nanoparticle concentrations (0.004–0.05 wt%). Quite similar behaviour was observed for both nanoparticles at the same
... Show MoreIn this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.