The electric submersible pump, also known as ESP, is a highly effective artificial lift method widely used in the oil industry due to its ability to deliver higher production rates compared to other artificial lift methods. In principle, ESP is a multistage centrifugal pump that converts kinetic energy into dynamic hydraulic pressure necessary to lift fluids at a higher rate with lower bottomhole pressure, especially in oil wells under certain bottomhole condition fluid, and reservoir characteristics. However, several factors and challenges can complicate the completion and optimum development of ESP deployed wells, which need to be addressed to optimize its performance by maximizing efficiency and minimizing costs and uncertainties. To analyze the performance of ESP deployed wells, the objective function must include various factors associated with fluids, reservoir inflow and outflow characteristics, and pump parameters. In particular, the inflow and outflow parameters include well configuration, and types of completion string (e.g. tubing sizes, and download completion hardware) while reservoir and fluid parameters include pressure, temperature, and PVT properties. Pump parameters include gas vacuum fraction, electrical and mechanical constraints, power requirements, cable requirements, downhole conditions, etc. Despite these challenges, ESPs' importance and efficiency necessitate an in-depth understanding of its origins and evolution over time, as well as the difficulties encountered in the oil industry. This paper aims to provide a comprehensive review of ESP's origin and development, including all prior studies that have influenced optimum development. The literature review is divided into four main sections: experimental investigations, numerical simulation studies, mechanical modeling, and in-depth studies on production optimization. By providing an in-depth analysis of previous work in each area, this paper aims to contribute to ongoing efforts to enhance ESPs' performance and efficiency in the oil industry.
The uniform flow distrbiution in the multi-outlets pipe highly depends on the several parameters act togather. Therefor, there is no general method to achieve this goal. The goal of this study is to investigate the proposed approach that can provide significant relief of the maldistribution. The method is based on re-circulating portion of flow from the end of the header to reduce pressure at this region . The physical model consists of main manifold with uniform longitudinal section having diameter of 152.4 mm (6 in), five laterals with diameter of 76.2 mm (3 in), and spacing of 300 mm. At first, The experiment is carried out with conventional manifold, which is a closed-end. Then, small amount of water is allowed
... Show Moreهدفت هذه الد ا رسة لاختبار تاثير بعض ظروف النمو على الفاعلية التثبيطية لبكتيريا Lactobacillus delbrueckii و L.fermentum على نمو بكتيريا E.coli وقد دلت نتائج د ا رسة اختبار الفاعلية التثبيطية
للعزلتان البكتيريتان Lactobacillus delbrueckii L.fermentum , ضد العزلة البكترية E.coli المستخدمة في هذه الد ا رسة عند الت ا ركيز المختلفة 100,90,70,50) ( % بان عالق العزلتان البكتيريتان
Lactobacillus delbrueckii و L.fermentum عند التركيز % 100 اعطى اعلى فاعلية تثبيطية ضد
بكتريا E.coli
The ascorbic acid content of juices of some fruits and pharmaceutical tablets of Vitamin C was determined by a homemade apparatus of DIE technique using a thermocouple as heat sensor. The method is simple, speed, low cost and the different types of turbid, colored samples can be analyzed without any problem. The results were of a valuable accuracy and precision, and the recovery of results was with acceptable values
A standard theoretical neutron energy flux distribution is achieved for the triton-triton nuclear fusion reaction in the range of triton energy about ≤10 MeV. This distribution give raises an evidence to provide the global calculations including the characteristics fusion parameters governing the T-T fusion reaction.