The electric submersible pump, also known as ESP, is a highly effective artificial lift method widely used in the oil industry due to its ability to deliver higher production rates compared to other artificial lift methods. In principle, ESP is a multistage centrifugal pump that converts kinetic energy into dynamic hydraulic pressure necessary to lift fluids at a higher rate with lower bottomhole pressure, especially in oil wells under certain bottomhole condition fluid, and reservoir characteristics. However, several factors and challenges can complicate the completion and optimum development of ESP deployed wells, which need to be addressed to optimize its performance by maximizing efficiency and minimizing costs and uncertainties. To analyze the performance of ESP deployed wells, the objective function must include various factors associated with fluids, reservoir inflow and outflow characteristics, and pump parameters. In particular, the inflow and outflow parameters include well configuration, and types of completion string (e.g. tubing sizes, and download completion hardware) while reservoir and fluid parameters include pressure, temperature, and PVT properties. Pump parameters include gas vacuum fraction, electrical and mechanical constraints, power requirements, cable requirements, downhole conditions, etc. Despite these challenges, ESPs' importance and efficiency necessitate an in-depth understanding of its origins and evolution over time, as well as the difficulties encountered in the oil industry. This paper aims to provide a comprehensive review of ESP's origin and development, including all prior studies that have influenced optimum development. The literature review is divided into four main sections: experimental investigations, numerical simulation studies, mechanical modeling, and in-depth studies on production optimization. By providing an in-depth analysis of previous work in each area, this paper aims to contribute to ongoing efforts to enhance ESPs' performance and efficiency in the oil industry.
The Compressional-wave (Vp) data are useful for reservoir exploration, drilling operations, stimulation, hydraulic fracturing employment, and development plans for a specific reservoir. Due to the different nature and behavior of the influencing parameters, more complex nonlinearity exists for Vp modeling purposes. In this study, a statistical relationship between compressional wave velocity and petrophysical parameters was developed from wireline log data for Jeribe formation in Fauqi oil field south Est Iraq, which is studied using single and multiple linear regressions. The model concentrated on predicting compressional wave velocity from petrophysical parameters and any pair of shear waves velocity, porosity, density, and
... Show MoreAbstract Physical requirements are an important priority for the development of football gymnastics coaches because the nature of performance is interconnected and interconnected in terms of the player's duties in the match. In the gameplay situations, the player must perform the skill with strength and speed coupled with accuracy and the reactions of the colleague and competitor alike, which represents the normal reality of the football gymnasium Skilled exercises are one of the most suitable technical side exercises as they are built according to the components of the skill requirements of the game and the nature of its performance, which appear on the gro
... Show MoreThe aim of this study is to investigate the nature of the relationship between domestic savings and domestic investment, or rather the efficiency of domestic savings in financing development in Algeria, in order to explain this relationship, identify the challenges to investment, and finance and accelerate economic growth. The economic measurement methodology has estimated the relationship between the savings rate and the local investment rate in the Algerian economy. We have annual data for the period 1970-2014. One of the most important conclusions is that there is no relationship between savings and investment, nor even an integration between them. To illustrate this, the use of some statistical tools, a
... Show MoreThe impact of mental training overlap on the development of some closed and open skills in five-aside football for middle school students, Ayad Ali Hussein, Haidar Abedalameer Habe
A pulsed (TEA-0O2) laser was used to dissociate molecules of silane ethylene (C2I-14) and ammonia (NH3) gases, through collision assisted multiple photon dissociation (MPD) to deposit(SiC i_xNx) thin films, where the X-values are 0, 0.13 and 0.33, on glass substrate at T,----648 K. deposition rate of (0.416-0.833) nm/pulse and thickness of (500-1000)nm .Fourier transform infrared spectrometry (FT-IR) was used to study the nature of the chemical bonds that exist in the films. Results revealed that these films contain complex networks of the atomic (Si, C, and N), other a quantity of atomic hydrogen and chemical bonds such as (Si-N, C-N, C-14 and N-H).Absorbance and Transmittance spectra in the wavelength range (400-1100) nm were used to stud
... Show MoreThe study deals with an analysis of the contents of the publications of the campaign (Together to defeat Corona), which was established by the United Nations Development Program in Iraq in the face of the Covid 19 virus.The research problem raises a main question:What are the implications of the campaign (Together to defeat Corona) of the United Nations Development Program (Iraq office) in addressing the Covid-19 virus in Iraq?From this main question, several sub-questions emerged, which were answered by this study in its chapters and investigations, including regarding the contents of advertisements, photos and videos for the publications of the (Together to Defeat Corona) campaign for the United Nations Iraq Office on their Facebook pageA
... Show MoreLiquefied petroleum gases (LPG) consist of hydrocarbons obtained by refining crude oil, either from propane or butane or a mixture of the two. There are often other components such as propylene, butylene or other hydrocarbons, but they are not the main component. The study aims to review previous studies dealing with designing an LPG system to deliver gas to residential campuses and buildings. LPG is extracted from natural gas NG by several processes, passing through fractionation towers and then pressuring into CNG storage tanks. Gas contains several problems, including gas leakage through the pipes and leads to fires or explosions in LPG storage and distribution tanks, so safety conditions were taken in the design and implementation. T
... Show More