Wellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data that was adopted by the ANN study was used here where it is comprised of 1922 measured points of SSW and the other nine parameters of Gamma Ray, Compressional Sonic, Caliper, Neutron Log, Density Log, Deep Resistivity, Azimuth Angle, Inclination Angle, and True Vertical Depth from one Iraqi directional well. Three existing empirical correlations are based only on Compressional Sonic Wave Time (CSW) for predicting SSW. In the same way of developing previous correlations, a fourth empirical correlation was developed by using all measured data points of SSW and CSW. A comparison demonstrated that utilizing ANN was better for SSW predicting with a higher R2 equal to 0.966 and lower other statistical coefficients than utilizing four empirical correlations, where correlations of Carroll, Freund, Brocher, and developed fourth had R2 equal to 0.7826, 0.7636, 0.6764, and 0.8016, respectively, with other statistical parameters that show the new developed correlation best than the other three existing. The use of ANN or new developed correlation in future SSW calculations is relevant to decision makers due to a number of limitations and target SSW accuracy.
The health of Roadway pavement surface is considered as one of the major issues for safe driving. Pavement surface condition is usually referred to micro and macro textures which enhances the friction between the pavement surface and vehicular tires, while it provides a proper drainage for heavy rainfall water. Measurement of the surface texture is not yet standardized, and many different techniques are implemented by various road agencies around the world based on the availability of equipment’s, skilled technicians’ and funds. An attempt has been made in this investigation to model the surface macro texture measured from sand patch method (SPM), and the surface micro texture measured from out flow time (OFT) and British pendul
... Show MoreAtorvastatin (ATR) is poorly soluble anti-hyperlipidemic drug; it belongs to the class II group according to the biopharmaceutical classification system (BCS) with low bioavailability due to its low solubility. Solid dispersions adsorbate is an effective technique for enhancing the solubility and dissolution of poorly soluble drugs.
The present study aims to enhance the solubility and dissolution rate of ATR using solid dispersion adsorption technique in comparison with ordinary solid dispersion. polyethylene glycol 4000 (PEG 4000), polyethylene glycol 6000 (PEG 6000), Poloxamer188 and Poloxam
... Show MoreNumerical simulations are carried out to assess the quality of the circular and square apodize apertures in observing extrasolar planets. The logarithmic scale of the normalized point spread function of these apertures showed sharp decline in the radial frequency components reaching to 10-36 and 10-34 respectively and demonstrating promising results. This decline is associated with an increase in the full width of the point spread function. A trade off must be done between this full width and the radial frequency components to overcome the problem of imaging extrasolar planets.
In this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.
Change detection is a technology ascertaining the changes of
specific features within a certain time Interval. The use of remotely
sensed image to detect changes in land use and land cover is widely
preferred over other conventional survey techniques because this
method is very efficient for assessing the change or degrading trends
of a region. In this research two remotely sensed image of Baghdad
city gathered by landsat -7and landsat -8 ETM+ for two time period
2000 and 2014 have been used to detect the most important changes.
Registration and rectification the two original images are the first
preprocessing steps was applied in this paper. Change detection using
NDVI subtractive has been computed, subtrac
The study was conducted at the fields of the Department of Horticulture and Landscape Gardening, College of Agriculture Engineering Sciences, University of Baghdad. During the spring 2017. All the recommended practices were followed during experimentation. The experimental material consisted four Genotype it is Batraa, Btera, Mosulle, and local selection. The experiment was applied in Randomized Complete Block Design (RCBD). The objectives of Study were to estimate the some genetic parameters and path coefficient for some traits Okra, The results of statistical analysis for these genotypes were highly significant differences for all traits except the traits number of leaves, the numbe
Retinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
Metal contents in vegetables are interesting because of issues related to food safety and potential health risks. The availability of these metals in the human body may perform many biochemical functions and some of them linked with various diseases at high levels. The current study aimed to evaluate the concentration of various metals in common local consumed vegetables using ICP-MS. The concentrations of metals in vegetables of tarragon, Bay laurel, dill, Syrian mesquite, vine leaves, thymes, arugula, basil, common purslane and parsley of this study were found to be in the range of, 76-778 for Al, 10-333 for B, 4-119 for Ba, 2812-24645 for Ca, 0.1-0.32 for Co, 201-464 for Fe, 3661-46400 for K, 0.31–1.
... Show MoreCoblatcomplex has been prepared by reaction between C16H19N3O3S (L) as ligand and metal salt (II). The prepared complex were characterized by infrared spectra, electromic spectra, magnetic susceptibility, molar conductivity measurement and metal analysis by atomic absorption and (C.H.N) analysis. From these studies tetrahedral geometry structure for the complex was suggested. The photodegredation of complex were study using photoreaction cell and preparednanoTiO2 catalyst in different conditions (concentration, temperatures, pH).The results show that the recation is of a first order with activation energy equal to (6.6512 kJ /mol).