Electrospun nanofiber membranes are employed in a variety of applications due to its unique features. the nanofibers' characterizations are effected by the polymer solution. The used solvent for dissolving the polymer powder is critical in preparing the precursor solution. In this paper, the Polyacrylonitrile (PAN)-based nanofibers were prepared in a concentration of 10 wt.% using various solvents (NMP, DMF, and DMSO). The surface morphology, porosity, and the mechanical strength of the three prepared 10 wt.% PAN-based nanofibers membranes (PAN/NMP, PAN/DMF, and PAN/DMSO) were characterized using the Scanning Electron Microscopy (SEM), Dry-wet Weights method, and Dynamic Mechanical Analyzer (DMA). Using DMF as a solvent resulted in a long, beaded, homogeneous, and smooth surface fibrous structure with an average diameter of 260 nm, which was the best among the solvents tested in this study in terms of porosity and mechanical strength.
Abstract. In this paper, a high order extended state observer (HOESO) based a sliding mode control (SMC) is proposed for a flexible joint robot (FJR) system in the presence of time varying external disturbance. A composite controller is integrated the merits of both HOESO and SMC to enhance the tracking performance of FJR system under the time varying and fast lumped disturbance. First, the HOESO estimator is constructed based on only one measured state to precisely estimate unknown system states and lumped disturbance with its high order derivatives in the FJR system. Second, the SMC scheme is designed based on such accurate estimations to govern the nominal FJR system by well compensating the estimation errors in the states and the lumped
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreThis paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul
... Show MoreThe rise of edge-cloud continuum computing is a result of the growing significance of edge computing, which has become a complementary or substitute option for traditional cloud services. The convergence of networking and computers presents a notable challenge due to their distinct historical development. Task scheduling is a major challenge in the context of edge-cloud continuum computing. The selection of the execution location of tasks, is crucial in meeting the quality-of-service (QoS) requirements of applications. An efficient scheduling strategy for distributing workloads among virtual machines in the edge-cloud continuum data center is mandatory to ensure the fulfilment of QoS requirements for both customer and service provider. E
... Show MoreRecommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreSocio-scientific issues provide a great platform to both engage students in scientific topics and assess their understanding of scientific concepts. Nancy R. Singer, Amy Lannin, Maha Kareem, William Romine, and Katie Kline report on the STEM Literacy Project, a three-year National Science Foundation grant that aimed to improve STEM teachers’ knowledge and integration of literacy in their classrooms. They describe teachers’ professional learning, scenario-based assessments and other strategies they incorporated in their STEM classrooms, and how writing enables students to understand real-world issues.
Polyaniline Multi wall Carbon nanotube (PANI/MWCNTs) nanocomposite thin films have been prepared by Plasma jet polymerization at low frequency on glass substrate with preliminary deposited aluminum electrodes to form Al/PANI-MWCNT/Al surface-type capacitive humidity sensors, the gap between the electrodes about 50 μm and the MWCNTs weight concentration varied between 0, 1, 2, 3, 4%. The diameter of the MWCNTs was in the range of 8-15 nm and the length 10-55 μm. The capacitance-humidity relationships of the sensors were investigated at humidity levels from 35 to 90% RH. The electrical properties showed that the capacity increased with increasing relative humidity, and that the sensitivity of the sensor increases with the increase of the
... Show MoreInformation processing has an important application which is speech recognition. In this paper, a two hybrid techniques have been presented. The first one is a 3-level hybrid of Stationary Wavelet Transform (S) and Discrete Wavelet Transform (W) and the second one is a 3-level hybrid of Discrete Wavelet Transform (W) and Multi-wavelet Transforms (M). To choose the best 3-level hybrid in each technique, a comparison according to five factors has been implemented and the best results are WWS, WWW, and MWM. Speech recognition is performed on WWS, WWW, and MWM using Euclidean distance (Ecl) and Dynamic Time Warping (DTW). The match performance is (98%) using DTW in MWM, while in the WWS and WWW are (74%) and (78%) respectively, but when using (
... Show MoreThe design and implementation of an active router architecture that enables flexible network programmability based on so-called "user components" will be presents. This active router is designed to provide maximum flexibility for the development of future network functionality and services. The designed router concentrated mainly on the use of Windows Operating System, enhancing the Active Network Encapsulating Protocol (ANEP). Enhancing ANEP gains a service composition scheme which enables flexible programmability through integration of user components into the router's data path. Also an extended program that creates and then injects data packets into the network stack of the testing machine will be proposed, we will call this program
... Show More