Preferred Language
Articles
/
ijcpe-907
Optimization of Drilling Well Design: A Review
...Show More Authors

Drilling well design optimization reduces total Authorization for Expenditures (AFE) by decreasing well constructing time and expense. Well design is not a constant pattern during the life cycle of the field. It should be optimized by continuous improvements for all aspects of redesigning the well depending on the actual field conditions and problems. The core objective of this study is to deliver a general review of the well design optimization processes and the available studies and applications to employ the well design optimization to solve problems encountered with well design so that cost effectiveness and perfect drilling well performance are achievable. Well design optimization processes include unconventional design(slimhole) compared with fat design, in addition to optimizing casing setting depth selection and casing string loads. Finally, we demonstrate well trajectory design considerations and optimization. The optimization process that mentioned above is significantly reduce drilling cost and time since, slimhole design with smaller casing and hole size reduce mud volume cost, steel cost and pump fuel cost. Optimum casing seat selection can ovoid serious problem such as kick and losses that increase nonproductive time (NPT) if kick tolerance and downhole pressure profile is not considered. Anticipating optimum stress loads in casing design is most effective way to reduce casing strings cost avoiding additional cost for designing with useless worst conditions. Wellbore trajectory optimization with geomechnic consideration is major concern to reduce the problem encountered with high torque, drag, formation collapse that result stuck pipe and non-productive time (NPT).

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 12 2017
Journal Name
Day 3 Wed, June 14, 2017
A New Practical Method for Predicting Equivalent Drainage Area of Well in Tight Gas Reservoirs
...Show More Authors
Abstract<p>The tight gas is one of the main types of the unconventional gas. Typically the tight gas reservoirs consist of highly heterogeneous low permeability reservoir. The economic evaluation for the production from tight gas production is very challenging task because of prevailing uncertainties associated with key reservoir properties, such as porosity, permeability as well as drainage boundary. However one of the important parameters requiring in this economic evaluation is the equivalent drainage area of the well, which relates the actual volume of fluids (e.g gas) produced or withdrawn from the reservoir at a certain moment that changes with time. It is difficult to predict this equival</p> ... Show More
View Publication
Scopus (12)
Crossref (8)
Scopus Crossref
Publication Date
Sun Jun 23 2019
Journal Name
American Rock Mechanics Association
Using an Analytical Model to Predict Collapse Volume During Drilling: A Case Study from Southern Iraq
...Show More Authors

Zubair Formation is one of the richest petroleum systems in Southern Iraq. This formation is composed mainly of sandstones interbedded with shale sequences, with minor streaks of limestone and siltstone. Borehole collapse is one of the most critical challenges that continuously appear in drilling and production operations. Problems associated with borehole collapse, such as tight hole while tripping, stuck pipe and logging tools, hole enlargement, poor log quality, and poor primary cement jobs, are the cause of the majority of the nonproductive time (NPT) in the Zubair reservoir developments. Several studies released models predicting the onset of borehole collapse and the amount of enlargement of the wellbore cross-section. However, assump

... Show More
View Publication
Publication Date
Tue Jan 01 2019
Journal Name
The 53rd U.s. Rock Mechanics/geomechanics Symposium
Using an analytical model to predict collapse volume during drilling: A case study from southern Iraq
...Show More Authors

Scopus (7)
Scopus
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
Design and Evaluation of a Polarizer Filter
...Show More Authors

This research includes theoretical and evaluation design of a polarizer filter of high transmission in the near IR region of (900-1200nm) for different incidence angles to obtain a long wave and short wave pass filter using analytical calculations. Results refer to a new configuration design in fewer layers than used in previous studies in the long wave pass at incidence angles (45o,50o,55o). Adopted Hafnium dioxide (HfO2) and Magnesium fluoride (MgF2) as coating material at design wavelength (933nm), the study also included design short wave pass polarizer by using the same coating material.

View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Design and Implementation of a Vlsm Simulator
...Show More Authors

Variable-Length Subnet Masks (VLSM), often referred to as "subnetting a subnet", is used to maximize addressing efficiency. The network administrator is able to use a long mask on networks with few hosts, and a short mask on subnets with many hosts. This addressing scheme allows growth and does not involve wasting addresses. VLSM gives a way of subnetting a network with
minimal loses of IP addresses for a specific range. Unfortunately, the network administrator has to perform several mathematical steps (or use charts) to get the required results from VLSM. In this paper, a simple graph simulator is proposed (using Visual Basic 6.0 Language) to perform all the required mathematical steps and to display the obtained required informatio

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 08 2022
Journal Name
Al-khwarizmi Engineering Journal
Design and Analysis of a Spraying Robot
...Show More Authors

An indoor spraying robot is built in this research to solve numerous challenges associated with manual spraying. The mechanical, hardware and essential technologies used are all detailed and designed. The proposed spraying robot's conceptual design is split into two parts: hardware and software. The mechanical design, manufacturing, electrical, and electronics systems are described in the hardware part, while the control of the robot is described in the software section. This robot's kinematic and dynamic models were developed using three links that move in the x, y, and z directions. The robot was then designed using SolidWorks software to compute each connection's deflection and maximum stresses. The characteristics of the stepper moto

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Wed Sep 12 2012
Journal Name
Journal Of Engineering
Design and Implementation of a Vlsm Simulator
...Show More Authors

Variable-Length Subnet Masks (VLSM), often referred to as "subnetting a subnet", is used to maximize addressing efficiency. The network administrator is able to use a long mask on networks with few hosts, and a short mask on subnets with many hosts. This addressing scheme allows growth and does not involve wasting addresses. VLSM gives a way of subnetting a network with minimal loses of IP addresses for a specific range. Unfortunately, the network administrator has to perform several mathematical steps (or use charts) to get the required results from VLSM. In this paper, a simple graph simulator is proposed (using Visual Basic 6.0 Language) to perform all the required mathematical steps and to display the obtained required information (the

... Show More
Publication Date
Sun Jun 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of a Semi-Analytical Type Curve of Transient Pressure Response in Complex Well-Reservoir Architectures
...Show More Authors

The objective of the conventional well testing technique is to evaluate well- reservoir interaction through determining the flow capacity and well potential on a short-term basis by relying on the transient pressure response methodology. The well testing analysis is a major input to the reservoir simulation model to validate the near wellbore characteristics and update the variables that are normally function of time such as skin, permeability and productivity multipliers.

Well test analysis models are normally built on analytical approaches with fundamental physical of homogenous media with line source solution. Many developments in the last decade were made to increase the resolution of transient response derivation to meet the

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Sep 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Biotreatment Technique to Treat Oil Wells Drilling Waste
...Show More Authors

The minimization, treatment and disposal of drilling wastes especially oily wastes are important environmental issues.

In this research two fungal isolates named Pleurotus ostreatus and Trichoderma harzianum were chosen carefully f or the purpose of biotreatment of oily drilled cuttings which resulting from  drilling oil wells using oil based muds (OBMs).

A relationship of total petroleum hydrocarbon degradation in oily drilled cuttings with time has been obtained. The results showed that Pleurotus ostreatus and Trichoderma harzianum can be considered hydrocarbon degrading microorganisms and the used biotreatment is cost effective process since most of the materials used in the cultivation and growth of the present f

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
Nanosecond laser pulses for aluminum and copper drilling
...Show More Authors

Nd:YAG laser pulses of 9 nanosecond pulse duration and operating wavelength at 1.06 μm, were utilized to drill high thermal conductivity and high reflectivity aluminum and copper foils. The results showed a dependence of drilled holes characteristics on laser power density and the number of laser pulses used. Drilled depth of 74 ϻm was obtained in aluminum at 11.036×108 W/cm2 of laser power density. Due to its higher melting point, copper required higher laser power density and/or larger number of laser pulses to melt, and a maximum depth of 25 μm was reached at 13.46×108 W/cm2 using single laser pulse.

View Publication Preview PDF
Crossref