The zeolite's textural properties have a significant effect on zeolite's effectiveness in the different industrial processes. This research aimed to study the textual properties of the NaX and FeX zeolites using the nitrogen adsorption-desorption technique at a constant low temperature. According to the International Union of Pure and Applied Chemistry, the adsorption-desorption isotherm showed that the studied materials were mixed kinds I/II isotherms and H3 type hysteresis. The Brunauer-Emmett-Teller isotherm was the best model to describe the nitrogen adsorption-desorption better than the Langmuir and Freundlich isotherms. The obtained adsorption capacity and Brunauer-Emmett-Teller surface area values for NaX were greater than FeX. According to the Kelvin equation, Barrett, Joyner, and Halenda model was used to determine pore size distribution, diameter, and average pore volume for the selected zeolites. The pore size distribution for NaX was wider than FeX zeolites, the pore diameter for NaX was less than FeX, and the average pore volume for FeX was greater than the value of NaX average pore volume. The comparative study was carried out with the previous studies, and the comparison showed that the textual properties of the modified zeolites agreed with other studies.
Kriging, a geostatistical technique, has been used for many years to evaluate groundwater quality. The best estimation data for unsampled points were determined by using this method depending on measured variables for an area. The groundwater contaminants assessment worldwide was found through many kriging methods. The present paper shows a review of the most known methods of kriging that were used in estimating and mapping the groundwater quality. Indicator kriging, simple kriging, cokriging, ordinary kriging, disjunctive kriging and lognormal kriging are the most used techniques. In addition, the concept of the disjunctive kriging method was explained in this work to be easily understood.
Copper, and its, alloys and composites (being the matrix), are broadly used in the electronic as well as bearing materials due to the excellent thermal and electrical conductivities it has.
In this study, powder metallurgy technique was used for the production of copper graphite composite with three volume perc ent of graphite. Processing parameters selected is (900) °C sintering temperature and (90) minutes holding time for samples that were heated in an inert atmosphere (argon gas). Wear test results showed a pronounced improvement in wear resistance as the percent of graphite increased which acts as solid lubricant (where wear rate was decreased by about 88% as compared with pure Cu). Microhardness and
... Show MoreIn this paper we present the first ever measured experimental electron momentum density of Cu2Sb at an intermediate resolution (0.6 a.u.) using 59.54 keV 241Am Compton spectrometer. The measurements are compared with the theoretical Compton profiles using density function theory (DFT) within a linear combination of an atomic orbitals (LCAO) method. In DFT calculation, Perdew-Burke-Ernzerhof (PBE) scheme is employed to treat correlation whereas exchange is included by following the Becke scheme. It is seen that various approximations within LCAO-DFT show relatively better agreement with the experimental Compton data. Ionic model calculations for a number of configurations (Cu+x/2)2(Sb-x) (0.0≤x≤2.0) are also performed utilizing free a
... Show MoreFractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal ima
... Show MoreFractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
In this paper, preliminary test Shrinkage estimator have been considered for estimating the shape parameter α of pareto distribution when the scale parameter equal to the smallest loss and when a prior estimate α0 of α is available as initial value from the past experiences or from quaintance cases. The proposed estimator is shown to have a smaller mean squared error in a region around α0 when comparison with usual and existing estimators.
Abstract Twenty Bacillus isolated were obtained from different sample food and water. Bacillus B1 isolated was the highest asparaginase producer, it was identified as a strain of B. subtilis. The highest production of asparaginase was observed when mineral salt medium containing 0.3% asparagen, pH 8 and incubated at 40°c for 24 hrs. B. subtilis B1 cells were immobilized by entrapment methods (calcium alginate and agar), and by adsorption on solid surface such as sawdust and cotton. The result showed that the immobilized cells by adsorption on sawdust was the best, the immobilized cell retained 88% of asparginase activity after 48h while free cell retained 65%. Cells immobilized by adsorption on sawdust was incubated at different temperatu
... Show MoreThree-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essentia
... Show MoreAbstract
In this study, modified organic solvent (organosolv) method was applied to remove high lignin content in the date palm fronds (type Al-Zahdi) which was taken from the Iraqi gardens. In modified organosolv, lignocellulosic material is fractionated into its constituents (lignin, cellulose and hemicellulose). In this process, solvent (organic)-water is brought into contact with the lignocellulosic biomass at high temperature, using stainless steel reactor (digester). Therefor; most of hemicellulose will remove from the biomass, while the solid residue (mainly cellulose) can be used in various industrial fields. Three variables were studied in this process: temperature, ratio of ethano
... Show More