The evaluation of subsurface formations as applied to oil well drilling started around 50 years ago. Generally, the curent review articule includes all methods for coring, logging, testing, and sampling. Also the methods for deciphering logs and laboratory tests that are relevant to assessing formations beneath the surface, including a look at the fluids they contain are discussed. Casing is occasionally set in order to more precisely evaluate the formations; as a result, this procedure is also taken into account while evaluating the formations. The petrophysics of reservoir rocks is the branch of science interested in studying chemical and physical properties of permeable media and the components of reservoir rocks which are associated with the pore and fluid distribution. Throughout recent years, several studies have been conducted on rock properties, such as porosity, permeability, capillary pressure, hydrocarbon saturation, fluid properties, electrical resistivity, self-or natural-potential, and radioactivity of different types of rocks. These properties and their relationships are used to evaluate the presence or absence of commercial quantities of hydrocarbons in formations penetrated by, or lying near, the wellbore. A principal purpose of this paper is to review the history of development the most common techniques used to calculate petrophysics properties in the laboratory and field based primarily on the researchers and scientists own experience in this field.
The study area soils suffer from several problems appear as tkhesvat and cracks in the roads and waterlogging which reduces the susceptibility of soil to withstand pressure, this study was conducted on the soil of the Karkh district based on field study that included (6) samples of soil physical analyses contain different ratios of (mud, sand, silt) as percentages (52%, 45%, 3 #) respectively, and liquidity limit rate (39%) Stroke rate plasticity was (20.6%) The rate coefficient of plasticity total (19.2%)0
57 isolates of Mycobacterium tuberculosis and Mycobacterium bovis were identified; they were isolated from different clinical sources which included sputum, bronchial wash, abscess, pleural fluid, gastric fluid, eye fluid, and CSF, also urine and ear swab. This investigation was carried out on 198 patient attended National Reference Laboratory for T.B during September 2009. Also the study declared that the ratio of separation of this bacterium from male was (67.6%) and it’s higher than the ratio of separation this bacterium from females which was (32.3%). The susceptibility of Mycobacterium tuberculosis to melatonin was evaluated. Many concentrati
... Show MoreIn this work, pure and copper mixed oxide PAni nanofiber thin films are successfully synthesized on silicon substrates by hydrothermal method and spin coating technique at room temperature with thickness of about 325 nm. The structural, surface morphological, optical and photoconductivity properties have been investigated. The XRD results showed that PAni films have crystalline nature, CuO and PAni/CuO nanostructure composites are monoclinic polycrystalline structure. The FESEM images of PAni clearly indicate that it has nanofiber-like structure, whereas the CuO film has spongelike shape. The surface morphology analysis of PAni/CuO composite shows that nanofiber caped with inorganic material which is CuO is a core-shell structure. Op
... Show MoreEpoxy resin has many chemical features and mechanical properties, but it has a small elongation at break, low impact strength and crack propagation resistance, i.e. it exhibits a brittle behavior. In the current study, the influence of adding kaolin with variable particle size on the mechanical properties (flexural modulus E, toughness Gc, fracture toughness Kc, hardness HB, and Wear rate WR) of epoxy resin was evaluated. Composites of epoxy with varying concentrations (0, 10, 20, 30, 40 weights %) of kaolin were prepared by hand-out method. The composites showed improved (E, Gc, Kc, HB, and WR) properties with the addition of filler. Also, similar results were observed with the decrease in particle size. In addition, in this study, mult
... Show MoreThis research studies the effect of adding five different percentages of polymer (2, 4, 6, 8, and 10% of cement weight) on cement mortar's fresh and hardened properties, which was cured at laboratory temperature for 7, 14, and 28 days. Workability increases with increasing polymer. The workability value was lowest (25.6 and 29.4) % in mixtures containing 2% and 4% of (SBR). Increasing polymer ratios significantly decreased mechanical properties (compressive and flexural strength). Therefore, the best results were at 2% SBR and 4% SBR at 28 days of age. An inverse relationship was recorded between the increase in SBR ratios and polymer-modified cement mortar's compressive and flexural strength values. In general, the high
... Show MoreBackground: zirconium (Zr) implants are known for having an aesthetically pleasing tooth-like colour Unlike the grey cervical collar that develops over time when titanium (Ti) implants are used in thin gingival biotypes. However, the surface qualities of Zr implants can be further improved. This present study examined using thermal vapour deposition (TVD) to coat Zr implants with germanium (Ge) to improve its physical and chemical characteristics and enhance soft and hard tissue responses. Materials and methods: Zr discs were divided into two groups; the uncoated (control) group was only grit-blasted with alumina particles while the coated (experimental) group was grit-blasted then coated with Ge via TVD. Field emission scanning ele
... Show MorePoly(L-lactic acid) (PLLA)/poly(caprolactone) (PCL) and two types of organoclay (OMMT) including a fatty amide and ocatdecylamine montmorillonite (FA-MMT and ODA-MMT) were employed to produce polymer nanocomposites by melt blending. Materials were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), elemental analysis, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties were also investigated for these nanocomposites. The nanocomposites showed increasing mechanical properties and thermal stability. XRD results indicated that the materials formed nanocomposites. SEM morphology showed that increasing content of OMMT reduc
... Show MoreTitanium alloy surface properties have an essential role in the interaction of dental implants with bone, and alteration of the surface of the implant could improve osseointegration. This study was designed to investigate the effect of different heat treatment temperatures on titanium alloy surface properties for dental implants. The effect of different temperatures of heat treatment (750°C, 850°C, 950°C and 1050°C) were investigated on the surface topography, surface chemistry, titanium oxide layer thickness, blood contact angle, & blood drop diameter of titanium alloy. The disks were prepared from titanium alloy (Ti-6Al-4V) and the samples were divided into five groups depending on the different temperatures of heat treatment. The hea
... Show MoreIn this work, ZnO nanostructures for powder ZnO were synthesized by Hydrothermal Method. Size and shape of ZnO nanostructureas can be controlled by change ammonia concentration. In the preparation of ZnO nanostructure, zinc nitrate hexahydrate [Zn(NO3)2·6H2O] was used as a precursor. The structure and morphology of ZnO nanostructure have been characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD). The synthesized ZnO nanostructures have a hexagonal wurtzite structure. Also using Zeta potential and Particle Size Analyzers and size distribution of the ZnO powder