Preferred Language
Articles
/
ijcpe-897
A Review on Models for Evaluating Rock Petrophysical Properties
...Show More Authors

The evaluation of subsurface formations as applied to oil well drilling started around 50 years ago. Generally, the curent review articule includes all methods for coring, logging, testing, and sampling. Also the methods for deciphering logs and laboratory tests that are relevant to assessing formations beneath the surface, including a look at the fluids they contain are discussed. Casing is occasionally set in order to more precisely evaluate the formations; as a result, this procedure is also taken into account while evaluating the formations. The petrophysics of reservoir rocks is the branch of science interested in studying chemical and physical properties of permeable media and the components of reservoir rocks which are associated with the pore and fluid distribution. Throughout recent years, several studies have been conducted on rock properties, such as porosity, permeability, capillary pressure, hydrocarbon saturation, fluid properties, electrical resistivity, self-or natural-potential, and radioactivity of different types of rocks. These properties and their relationships are used to evaluate the presence or absence of commercial quantities of hydrocarbons in formations penetrated by, or lying near, the wellbore. A principal purpose of this paper is to review the history of development the most common techniques used to calculate petrophysics properties in the laboratory and field based primarily on the researchers and scientists own experience in this field.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
International Journal Of Hydrogen Energy
Assessment of wettability and rock-fluid interfacial tension of caprock: Implications for hydrogen and carbon dioxide geo-storage
...Show More Authors

Scopus (152)
Crossref (152)
Scopus Clarivate Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Engineering
A Review in Sustainable Plastic Waste in Concrete
...Show More Authors

Recently times, industrial development has increased, including plastic industries, and since plastic has a very long analytical life, it will cause environmental pollution. Therefore studies have resorted to reusing recycled plastic waste (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, some studies were reviewed and then summarized into several things, including the percentage of plastic replacement from the aggregate and the effect of this percentage on the fresh properties of concrete, such as the workability and the effect of plastic waste on the hardening properties of concrete such as dry density, compressive, tensile and flexural strength.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
A study of some atomic properties for He-like selected ions
...Show More Authors

The atomic properties have been studied for He-like ions (He atom, Li+, Be2+ and B3+ions). These properties included, the atomic form factor f(S), electron density at the nucleus , nuclear magnetic shielding constant and diamagnetic susceptibility ,which are very important in the study of physical properties of the atoms and ions. For these purpose two types of the wave functions applied are used, the Hartree-Fock (HF) waves function (uncorrelated) and the Configuration interaction (CI) wave function (correlated). All the results and the behaviors obtained in this work have been discussed, interpreted and compared with those previously obtained.

View Publication Preview PDF
Crossref
Publication Date
Thu Oct 15 2015
Journal Name
Al Mustansyriah Journal Of Science
Comparison between (ARIMA) and (ANNs) models for estimating the relative humidity for Baghdad city
...Show More Authors

The aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.

Publication Date
Thu Aug 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Some Estimation methods for the two models SPSEM and SPSAR for spatially dependent data
...Show More Authors

ABSTRUCT

In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error          ( λ ) in the model (SPSEM), estimated  the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
Comparative Transfer Learning Models for End-to-End Self-Driving Car
...Show More Authors

Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 30 2014
Journal Name
College Of Islamic Sciences
Excuse for ignorance in Islamic law         Financial transactions: (Contemporary Applied Models)
...Show More Authors

The researcher highlighted in his research on an important subject that people need, which is the excuse of ignorance in Islamic law. , As the flag of light and ignorance of darkness. Then the researcher lameness of the reasons for research in this subject as it is one of the assets that should be practiced by the ruler and the judge and the mufti and the diligent and jurisprudent, but the public should identify the issues that ignore ignorance and issues that are not excused even if claimed ignorance.
 Then the researcher concluded the most important results, and recommendations that he wanted to set scientific rules for students of science and Muslims in general, to follow the issues of legitimacy and learn its provisions and i

... Show More
View Publication Preview PDF
Publication Date
Mon Nov 09 2020
Journal Name
Construction Research Congress 2020
Alternative Risk Models for Optimal Investment in Portfolio-Based Community Solar
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Mj Journal On Applied Mathematics
Mathematical models for estimation the concentration of heavy metals in soil
...Show More Authors

Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (6)
Crossref