The evaluation of subsurface formations as applied to oil well drilling started around 50 years ago. Generally, the curent review articule includes all methods for coring, logging, testing, and sampling. Also the methods for deciphering logs and laboratory tests that are relevant to assessing formations beneath the surface, including a look at the fluids they contain are discussed. Casing is occasionally set in order to more precisely evaluate the formations; as a result, this procedure is also taken into account while evaluating the formations. The petrophysics of reservoir rocks is the branch of science interested in studying chemical and physical properties of permeable media and the components of reservoir rocks which are associated with the pore and fluid distribution. Throughout recent years, several studies have been conducted on rock properties, such as porosity, permeability, capillary pressure, hydrocarbon saturation, fluid properties, electrical resistivity, self-or natural-potential, and radioactivity of different types of rocks. These properties and their relationships are used to evaluate the presence or absence of commercial quantities of hydrocarbons in formations penetrated by, or lying near, the wellbore. A principal purpose of this paper is to review the history of development the most common techniques used to calculate petrophysics properties in the laboratory and field based primarily on the researchers and scientists own experience in this field.
We wanted to find out how selenium (Se) affects broiler chicken performance, meat physicochemical properties, and selenium deposition in the tissues of broilers. Each of the 96 experimental pens had 30 chickens and included a total of 2,880 one-day-old broilers (Cobb 500 strain). A factorial design of four-by-three (SY + SS) and eight replicates (SY + SS) was used for the 12 experimental treatments, with selenium levels ranging from 0.15 to 0.60 ppm and organic (SY) or inorganic (SS) sources of selenium and their relationship (SY + SS). There were no differences in performance (P > 0.05) across Se levels or sources. 106 g/day of ADFI, 63 g/day of ADG, and 1.6844 kg/kg of FCR were found to be the averaging values for these three parameters:
... Show MoreIn this research study the effect of irradiation by (CW) CO2 laser on some optical properties of (Cds) doping by Ni thin films of (1)µm thickness has been prepared by heat evaporation method. (X-Ray) diffraction technique showed the prepared films before and after irradiation are ploy crystalline hexagonal structure, optical properties were include recording of absorbance spectra for prepared films in the range of (400-1000) nm wave lengths, the absorption coefficient and the energy gap were calculated before and after irradiation, finally the irradiation affected (CdS) thin films by changing its color from the Transparent yellow to dark rough yellow and decrease the value absorption coefficient also increase the value of energy gap.
Dental casts come into direct contact with impression materials and other items that are contaminated by saliva and blood from a patient's mouth, leaving the casts susceptible to cross-contamination. The disinfectant solutions of the impression materials cause various adverse reactions. Therefore, disinfection of dental casts may be effective in preventing cross infection. This study was carried out to evaluate the surface hardness, dimensional accuracy, reproduction of details and surface porosity of type III, type IV and type IV extra hard dental stone after immersion in and spray by using SOLO and Sodium hypochlorite disinfectant solutions. Materials and methods: 240 Stone samples were prepared in rubber rings, A total of 60 test block w
... Show MoreThe structural, optical and electrical properties of ZnS films prepared by vacuum evaporation technique on glass substrate at room temperature and treated at different annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction studies show that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (111). The optical properties investigated which include the absorbance and transmittance spectra, energy band gab, absorption coefficient, and other optical constants. The results showed that films have direct optical transition. The optical band gab was found to be in the range t
... Show MorePolycrystalline Cadmium Oxide (CdO) thin films were prepared using pulsed laser deposition onto glass substrates at room temperature with different thicknesses of (300, 350 and 400)nm, these films were irradiated with cesium-137(Cs-137) radiation. The thickness and irradiation effects on structural and optical properties were studied. It is observed by XRD results that films are polycrystalline before and after irradiation, with cubic structure and show preferential growth along (111) and (200) directions. The crystallite sizes increases with increasing of thickness, and decreases with gamma radiation, which are found to be within the range (23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for thickness 350nm and 4
... Show MoreBackground: The daily cleaning routine of the silicone maxillofacial prostheses by the patient may cause some alteration in the materials properties. The purpose of the present study was to investigate the effect of different disinfection procedures on some properties of silicon dioxide reinforced Cosmesil M511 HTV maxillofacial silicone. Materials and Methods: One hundred and sixty (160) specimens were prepared by mixing 5% SiO2 nano particles and 0.5% intrinsic cream color into the silicone polymer according to manufacturer's instructions. Specimens were divided into 4 groups according to the performed test (tear strength, surface hardness, surface roughness and color) with 40 specimens each. Each group was further subdivided according to
... Show MoreEffect of copper doping and thermal annealing on the structural and optical properties of Zn0.5Cd0.5S thin films prepared by chemical spray pyrolysis have been studied. Depositions were done at 250°C on glass substrate. The structural properties and surface morphology of deposited films were studied using X-ray diffraction (XRD) and photomicroscope (PHM) techniques. XRD studies reveal that all films are crystalline tetragonal structure. The film crystallinity are increased with 1% Cu-doping concentration and also increased for the films annealed at 300°C than the other studied cases. The lattice constant 'a' and 'c' varies with doping concentrations from 5.487Å to 5.427Å and 10.871Å to 10.757Å respectively. The grain size attained
... Show More