Preferred Language
Articles
/
ijcpe-897
A Review on Models for Evaluating Rock Petrophysical Properties
...Show More Authors

The evaluation of subsurface formations as applied to oil well drilling started around 50 years ago. Generally, the curent review articule includes all methods for coring, logging, testing, and sampling. Also the methods for deciphering logs and laboratory tests that are relevant to assessing formations beneath the surface, including a look at the fluids they contain are discussed. Casing is occasionally set in order to more precisely evaluate the formations; as a result, this procedure is also taken into account while evaluating the formations. The petrophysics of reservoir rocks is the branch of science interested in studying chemical and physical properties of permeable media and the components of reservoir rocks which are associated with the pore and fluid distribution. Throughout recent years, several studies have been conducted on rock properties, such as porosity, permeability, capillary pressure, hydrocarbon saturation, fluid properties, electrical resistivity, self-or natural-potential, and radioactivity of different types of rocks. These properties and their relationships are used to evaluate the presence or absence of commercial quantities of hydrocarbons in formations penetrated by, or lying near, the wellbore. A principal purpose of this paper is to review the history of development the most common techniques used to calculate petrophysics properties in the laboratory and field based primarily on the researchers and scientists own experience in this field.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Aug 01 2018
Journal Name
International Journal Of Engineering
Esterification Reaction Kinetics Using Ion Exchange Resin Catalyst by Pseudo-Homogenous and Eley-Ridel Models
...Show More Authors

This work deals with kinetics and chemical equilibrium studies of esterification reaction of ethanol with acetic acid. The esterification reaction was catalyzed by an acidic ion exchange resin (Amberlyst- 15) using a batch stirred tank reactor. The pseudo-homogenous and Eley-Rideal models were successfully fitted with experimental data. At first, Eley-Rideal model was examined for heterogeneous esterification of acetic acid and ethanol. The pseudo-homogenous model was investigated with a power-law model. The apparent reaction order was determined to be (0.88) for Ethanol and (0.92) for acetic acid with a correlation coefficient (R2) of 0.981 and 0.988, respectively. The reaction order was determined to be 4.1087x10-3 L0.8/(mol0.8.min) with

... Show More
Scopus (8)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Mar 12 2017
Journal Name
Al-academy
The reality of interior design of Sharjah mosques and the possibility of development - selected models
...Show More Authors

Observed mosques with the advent of Islam under the auspices of care being the houses of God Almighty, and I like parts of the ground to him, the center of radiation spiritual, intellectual and ideological in the lives of Muslims, was the most important cultural and architectural evidence built by Muslims voicing their deep faith and serenity Aqidthm.valmsadjad better reflecting the reality of communication between the person and his Lord, because he is the most important building of permanence and survival, making it imperative designed the best visual forms both externally and internally.Mosques have been characterized in the United Arab Emirates distinct characteristics in terms of building elements of construction in general, and the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Comparison between the estimated of nonparametric methods by using the methodology of quantile regression models
...Show More Authors

This paper study two stratified quantile regression models of the marginal and the conditional varieties. We estimate the quantile functions of these models by using two nonparametric methods of smoothing spline (B-spline) and kernel regression (Nadaraya-Watson). The estimates can be obtained by solve nonparametric quantile regression problem which means minimizing the quantile regression objective functions and using the approach of varying coefficient models. The main goal is discussing the comparison between the estimators of the two nonparametric methods and adopting the best one between them

Scopus
Publication Date
Thu Jan 03 2019
Journal Name
International Journal Of Civil Engineering And Technology (ijciet)
Condition Prediction Models of Deteriorated Trunk Sewer Using Multinomial Logistic Regression and Artificial Neural Network
...Show More Authors

Sewer systems are used to convey sewage and/or storm water to sewage treatment plants for disposal by a network of buried sewer pipes, gutters, manholes and pits. Unfortunately, the sewer pipe deteriorates with time leading to the collapsing of the pipe with traffic disruption or clogging of the pipe causing flooding and environmental pollution. Thus, the management and maintenance of the buried pipes are important tasks that require information about the changes of the current and future sewer pipes conditions. In this research, the study was carried on in Baghdad, Iraq and two deteriorations model's multinomial logistic regression and neural network deterioration model NNDM are used to predict sewers future conditions. The results of the

... Show More
Publication Date
Sat Dec 21 2024
Journal Name
Edelweiss Applied Science And Technology
Using count regression models to investigate the most important economic factors affecting divorce in Iraq
...Show More Authors

The two most popular models inwell-known count regression models are Poisson and negative binomial regression models. Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. Negative binomial regression is similar to regular multiple regression except that the dependent (Y) variables an observed count that follows the negative binomial distribution. This research studies some factors affecting divorce using Poisson and negative binomial regression models. The factors are unemplo

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Jun 21 1930
Journal Name
College Of Islamic Sciences
Quelques raisons du total et son impact sur l'interprétation du Coran: Study of explanatory models
...Show More Authors

The reasons for the totality are varied and multiple, some of which are attributed to the methods of the Arabic language as the participant
Verbal and omnipotent differences in the oud of conscience, which are comprehensive reasons for language in all
And some of these reasons are due to the sciences of the Qur'an, such as cessation and initiation
The explanation of the explanation for the multiplicity of words and differences in them, which necessarily led to a dispute jurisprudence
Linked to the origin of disagreement in the interpretation of the totality and its orientation and understanding and to summarize this subject and diverge
Parts and vocabulary did not receive the necessary care and did not absorb the lesson an

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Physics
Development and Assessment of Feed Forward Back Propagation Neural Network Models to Predict Sunshine Duration
...Show More Authors

         The duration of sunshine is one of the important indicators and one of the variables for measuring the amount of solar radiation collected in a particular area. Duration of solar brightness has been used to study atmospheric energy balance, sustainable development, ecosystem evolution and climate change. Predicting the average values of sunshine duration (SD) for Duhok city, Iraq on a daily basis using the approach of artificial neural network (ANN) is the focus of this paper. Many different ANN models with different input variables were used in the prediction processes. The daily average of the month, average temperature, maximum temperature, minimum temperature, relative humidity, wind direction, cloud level and atmosp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 01 2011
Journal Name
Saudi Pharmaceutical Journal
Free radical scavenging activity of silibinin in nitrite-induced hemoglobin oxidation and membrane fragility models
...Show More Authors

View Publication
Scopus (15)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
The use of ARIMA, ANN and SVR models in time series hybridization with practical application
...Show More Authors

Forecasting is one of the important topics in the analysis of time series, as the importance of forecasting in the economic field has emerged in order to achieve economic growth. Therefore, accurate forecasting of time series is one of the most important challenges that we seek to make the best decision, the aim of the research is to suggest employing hybrid models to predict daily crude oil prices. The hybrid model consists of integrating the linear component, which represents Box Jenkins models, and the non-linear component, which represents one of the methods of artificial intelligence, which is the artificial neural network (ANN), support vector regression (SVR) algorithm and it was shown that the proposed hybrid models in the predicti

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
The use of ARIMA, LSTM and GRU models in time series hybridization with practical application
...Show More Authors

The importance of forecasting has emerged in the economic field in order to achieve economic growth, as forecasting is one of the important topics in the analysis of time series, and accurate forecasting of time series is one of the most important challenges in which we seek to make the best decision. The aim of the research is to suggest the use of hybrid models for forecasting the daily crude oil prices as the hybrid model consists of integrating the linear component, which represents Box Jenkins models and the non-linear component, which represents one of the methods of artificial intelligence, which is long short term memory (LSTM) and the gated recurrent unit (GRU) which represents deep learning models. It was found that the proposed h

... Show More
View Publication Preview PDF